1qzf: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:1qzf.png|left|200px]]
==Crystal structure of DHFR-TS from Cryptosporidium hominis==
<StructureSection load='1qzf' size='340' side='right' caption='[[1qzf]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1qzf]] is a 5 chain structure with sequence from [http://en.wikipedia.org/wiki/Cryptosporidium_hominis Cryptosporidium hominis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QZF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1QZF FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CB3:10-PROPARGYL-5,8-DIDEAZAFOLIC+ACID'>CB3</scene>, <scene name='pdbligand=FOL:FOLIC+ACID'>FOL</scene>, <scene name='pdbligand=NDP:NADPH+DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NDP</scene>, <scene name='pdbligand=UMP:2-DEOXYURIDINE+5-MONOPHOSPHATE'>UMP</scene><br>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1qzf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qzf OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1qzf RCSB], [http://www.ebi.ac.uk/pdbsum/1qzf PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/qz/1qzf_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
We have determined the crystal structure of dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Cryptosporidium hominis, revealing a unique linker domain containing an 11-residue alpha-helix that has extensive interactions with the opposite DHFR-TS monomer of the homodimeric enzyme. Analysis of the structure of DHFR-TS from C. hominis and of previously solved structures of DHFR-TS from Plasmodium falciparum and Leishmania major reveals that the linker domain primarily controls the relative orientation of the DHFR and TS domains. Using the tertiary structure of the linker domains, we have been able to place a number of protozoa in two distinct and dissimilar structural families corresponding to two evolutionary families and provide the first structural evidence validating the use of DHFR-TS as a tool of phylogenetic classification. Furthermore, the structure of C. hominis DHFR-TS calls into question surface electrostatic channeling as the universal means of dihydrofolate transport between TS and DHFR in the bifunctional enzyme.


{{STRUCTURE_1qzf|  PDB=1qzf  |  SCENE=  }}
Phylogenetic classification of protozoa based on the structure of the linker domain in the bifunctional enzyme, dihydrofolate reductase-thymidylate synthase.,O'Neil RH, Lilien RH, Donald BR, Stroud RM, Anderson AC J Biol Chem. 2003 Dec 26;278(52):52980-7. Epub 2003 Oct 9. PMID:14555647<ref>PMID:14555647</ref>


===Crystal structure of DHFR-TS from Cryptosporidium hominis===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_14555647}}
 
==About this Structure==
[[1qzf]] is a 5 chain structure with sequence from [http://en.wikipedia.org/wiki/Cryptosporidium_hominis Cryptosporidium hominis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QZF OCA].


==See Also==
==See Also==
*[[Dihydrofolate reductase|Dihydrofolate reductase]]
*[[Dihydrofolate reductase|Dihydrofolate reductase]]
*[[Thymidylate synthase|Thymidylate synthase]]
== References ==
 
<references/>
==Reference==
__TOC__
<ref group="xtra">PMID:014555647</ref><ref group="xtra">PMID:016511011</ref><references group="xtra"/>
</StructureSection>
[[Category: Cryptosporidium hominis]]
[[Category: Cryptosporidium hominis]]
[[Category: Anderson, A C.]]
[[Category: Anderson, A C.]]

Revision as of 00:00, 29 September 2014

Crystal structure of DHFR-TS from Cryptosporidium hominisCrystal structure of DHFR-TS from Cryptosporidium hominis

Structural highlights

1qzf is a 5 chain structure with sequence from Cryptosporidium hominis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

We have determined the crystal structure of dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Cryptosporidium hominis, revealing a unique linker domain containing an 11-residue alpha-helix that has extensive interactions with the opposite DHFR-TS monomer of the homodimeric enzyme. Analysis of the structure of DHFR-TS from C. hominis and of previously solved structures of DHFR-TS from Plasmodium falciparum and Leishmania major reveals that the linker domain primarily controls the relative orientation of the DHFR and TS domains. Using the tertiary structure of the linker domains, we have been able to place a number of protozoa in two distinct and dissimilar structural families corresponding to two evolutionary families and provide the first structural evidence validating the use of DHFR-TS as a tool of phylogenetic classification. Furthermore, the structure of C. hominis DHFR-TS calls into question surface electrostatic channeling as the universal means of dihydrofolate transport between TS and DHFR in the bifunctional enzyme.

Phylogenetic classification of protozoa based on the structure of the linker domain in the bifunctional enzyme, dihydrofolate reductase-thymidylate synthase.,O'Neil RH, Lilien RH, Donald BR, Stroud RM, Anderson AC J Biol Chem. 2003 Dec 26;278(52):52980-7. Epub 2003 Oct 9. PMID:14555647[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. O'Neil RH, Lilien RH, Donald BR, Stroud RM, Anderson AC. Phylogenetic classification of protozoa based on the structure of the linker domain in the bifunctional enzyme, dihydrofolate reductase-thymidylate synthase. J Biol Chem. 2003 Dec 26;278(52):52980-7. Epub 2003 Oct 9. PMID:14555647 doi:10.1074/jbc.M310328200

1qzf, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA