1xn0: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Catalytic Domain Of Human Phosphodiesterase 4B In Complex With (R,S)-Rolipram== | ||
<StructureSection load='1xn0' size='340' side='right' caption='[[1xn0]], [[Resolution|resolution]] 2.31Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1xn0]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XN0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1XN0 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ROL:ROLIPRAM'>ROL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CME:S,S-(2-HYDROXYETHYL)THIOCYSTEINE'>CME</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1xlx|1xlx]], [[1xlz|1xlz]], [[1xm4|1xm4]], [[1xm6|1xm6]], [[1xmu|1xmu]], [[1xmy|1xmy]], [[1xom|1xom]], [[1xon|1xon]], [[1xoq|1xoq]], [[1xor|1xor]], [[1xos|1xos]], [[1xot|1xot]], [[1xoz|1xoz]], [[1xp0|1xp0]]</td></tr> | |||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PDE4B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/3',5'-cyclic-nucleotide_phosphodiesterase 3',5'-cyclic-nucleotide phosphodiesterase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.4.17 3.1.4.17] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1xn0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xn0 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1xn0 RCSB], [http://www.ebi.ac.uk/pdbsum/1xn0 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/xn/1xn0_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Phosphodiesterases (PDEs) comprise a large family of enzymes that catalyze the hydrolysis of cAMP or cGMP and are implicated in various diseases. We describe the high-resolution crystal structures of the catalytic domains of PDE4B, PDE4D, and PDE5A with ten different inhibitors, including the drug candidates cilomilast and roflumilast, for respiratory diseases. These cocrystal structures reveal a common scheme of inhibitor binding to the PDEs: (i) a hydrophobic clamp formed by highly conserved hydrophobic residues that sandwich the inhibitor in the active site; (ii) hydrogen bonding to an invariant glutamine that controls the orientation of inhibitor binding. A scaffold can be readily identified for any given inhibitor based on the formation of these two types of conserved interactions. These structural insights will enable the design of isoform-selective inhibitors with improved binding affinity and should facilitate the discovery of more potent and selective PDE inhibitors for the treatment of a variety of diseases. | |||
Structural basis for the activity of drugs that inhibit phosphodiesterases.,Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY Structure. 2004 Dec;12(12):2233-47. PMID:15576036<ref>PMID:15576036</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Phosphodiesterase|Phosphodiesterase]] | *[[Phosphodiesterase|Phosphodiesterase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: 3',5'-cyclic-nucleotide phosphodiesterase]] | [[Category: 3',5'-cyclic-nucleotide phosphodiesterase]] | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] |
Revision as of 23:05, 28 September 2014
Catalytic Domain Of Human Phosphodiesterase 4B In Complex With (R,S)-RolipramCatalytic Domain Of Human Phosphodiesterase 4B In Complex With (R,S)-Rolipram
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedPhosphodiesterases (PDEs) comprise a large family of enzymes that catalyze the hydrolysis of cAMP or cGMP and are implicated in various diseases. We describe the high-resolution crystal structures of the catalytic domains of PDE4B, PDE4D, and PDE5A with ten different inhibitors, including the drug candidates cilomilast and roflumilast, for respiratory diseases. These cocrystal structures reveal a common scheme of inhibitor binding to the PDEs: (i) a hydrophobic clamp formed by highly conserved hydrophobic residues that sandwich the inhibitor in the active site; (ii) hydrogen bonding to an invariant glutamine that controls the orientation of inhibitor binding. A scaffold can be readily identified for any given inhibitor based on the formation of these two types of conserved interactions. These structural insights will enable the design of isoform-selective inhibitors with improved binding affinity and should facilitate the discovery of more potent and selective PDE inhibitors for the treatment of a variety of diseases. Structural basis for the activity of drugs that inhibit phosphodiesterases.,Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY Structure. 2004 Dec;12(12):2233-47. PMID:15576036[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|