1m34: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Nitrogenase Complex From Azotobacter Vinelandii Stabilized By ADP-Tetrafluoroaluminate== | ||
<StructureSection load='1m34' size='340' side='right' caption='[[1m34]], [[Resolution|resolution]] 2.30Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1m34]] is a 16 chain structure with sequence from [http://en.wikipedia.org/wiki/Azotobacter_vinelandii Azotobacter vinelandii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1M34 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1M34 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=ALF:TETRAFLUOROALUMINATE+ION'>ALF</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CFM:FE-MO-S+CLUSTER'>CFM</scene>, <scene name='pdbligand=CLF:FE(8)-S(7)+CLUSTER'>CLF</scene>, <scene name='pdbligand=HCA:3-HYDROXY-3-CARBOXY-ADIPIC+ACID'>HCA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1n2c|1n2c]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Nitrogenase Nitrogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.18.6.1 1.18.6.1] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1m34 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1m34 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1m34 RCSB], [http://www.ebi.ac.uk/pdbsum/1m34 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/m3/1m34_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The transient formation of a complex between the component Fe- and MoFe-proteins of nitrogenase represents a central event in the substrate reduction mechanism of this enzyme. Previously, we have isolated an N-[3-(dimethylamino)propyl]-N'-ethylcarbodiimide (EDC) cross-linked complex of these proteins stabilized by a covalent isopeptide linkage between Glu 112 and Lys beta400 of the Fe-protein and MoFe-protein, respectively [Willing, A., et al. (1989) J. Biol. Chem. 264, 8499-8503; Willing, A., and Howard, J. B. (1990) J. Biol. Chem. 265, 6596-6599]. We report here the biochemical and structural characterization of the cross-linked complex to assess the mechanistic relevance of this species. Glycinamide inhibits the cross-linking reaction, and is found to be specifically incorporated into Glu 112 of the Fe-protein, without detectable modification of either of the neighboring residues (Glu 110 and Glu 111). This modified protein is still competent for substrate reduction, demonstrating that formation of the cross-linked complex is responsible for the enzymatic inactivation, and not the EDC reaction or the modification of the Fe-protein. Crystallographic analysis of the EDC-cross-linked complex at 3.2 A resolution confirms the site of the isopeptide linkage. The nature of the protein surfaces around the cross-linking site suggests there is a strong electrostatic component to the formation of the complex, although the interface area between the component proteins is small. The binding footprints between proteins in the cross-linked complex are adjacent, but with little overlap, to those observed in the complex of the nitrogenase proteins stabilized by ADP-AlF(4)(-). The results of these studies suggest that EDC cross-linking traps a nucleotide-independent precomplex of the nitrogenase proteins driven by complementary electrostatic interactions that subsequently rearranges in a nucleotide-dependent fashion to the electron transfer competent state observed in the ADP-AlF(4)(-) structure. | |||
Biochemical and structural characterization of the cross-linked complex of nitrogenase: comparison to the ADP-AlF4(-)-stabilized structure.,Schmid B, Einsle O, Chiu HJ, Willing A, Yoshida M, Howard JB, Rees DC Biochemistry. 2002 Dec 31;41(52):15557-65. PMID:12501184<ref>PMID:12501184</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Nitrogenase|Nitrogenase]] | *[[Nitrogenase|Nitrogenase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Azotobacter vinelandii]] | [[Category: Azotobacter vinelandii]] | ||
[[Category: Nitrogenase]] | [[Category: Nitrogenase]] |
Revision as of 20:17, 28 September 2014
Nitrogenase Complex From Azotobacter Vinelandii Stabilized By ADP-TetrafluoroaluminateNitrogenase Complex From Azotobacter Vinelandii Stabilized By ADP-Tetrafluoroaluminate
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe transient formation of a complex between the component Fe- and MoFe-proteins of nitrogenase represents a central event in the substrate reduction mechanism of this enzyme. Previously, we have isolated an N-[3-(dimethylamino)propyl]-N'-ethylcarbodiimide (EDC) cross-linked complex of these proteins stabilized by a covalent isopeptide linkage between Glu 112 and Lys beta400 of the Fe-protein and MoFe-protein, respectively [Willing, A., et al. (1989) J. Biol. Chem. 264, 8499-8503; Willing, A., and Howard, J. B. (1990) J. Biol. Chem. 265, 6596-6599]. We report here the biochemical and structural characterization of the cross-linked complex to assess the mechanistic relevance of this species. Glycinamide inhibits the cross-linking reaction, and is found to be specifically incorporated into Glu 112 of the Fe-protein, without detectable modification of either of the neighboring residues (Glu 110 and Glu 111). This modified protein is still competent for substrate reduction, demonstrating that formation of the cross-linked complex is responsible for the enzymatic inactivation, and not the EDC reaction or the modification of the Fe-protein. Crystallographic analysis of the EDC-cross-linked complex at 3.2 A resolution confirms the site of the isopeptide linkage. The nature of the protein surfaces around the cross-linking site suggests there is a strong electrostatic component to the formation of the complex, although the interface area between the component proteins is small. The binding footprints between proteins in the cross-linked complex are adjacent, but with little overlap, to those observed in the complex of the nitrogenase proteins stabilized by ADP-AlF(4)(-). The results of these studies suggest that EDC cross-linking traps a nucleotide-independent precomplex of the nitrogenase proteins driven by complementary electrostatic interactions that subsequently rearranges in a nucleotide-dependent fashion to the electron transfer competent state observed in the ADP-AlF(4)(-) structure. Biochemical and structural characterization of the cross-linked complex of nitrogenase: comparison to the ADP-AlF4(-)-stabilized structure.,Schmid B, Einsle O, Chiu HJ, Willing A, Yoshida M, Howard JB, Rees DC Biochemistry. 2002 Dec 31;41(52):15557-65. PMID:12501184[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|