1msb: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "1msb" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:1msb.png|left|200px]]
==STRUCTURE OF THE CALCIUM-DEPENDENT LECTIN DOMAIN FROM A RAT MANNOSE-BINDING PROTEIN DETERMINED BY MAD PHASING==
<StructureSection load='1msb' size='340' side='right' caption='[[1msb]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1msb]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Rattus_rattus Rattus rattus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MSB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1MSB FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HO:HOLMIUM+ATOM'>HO</scene><br>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1msb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1msb OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1msb RCSB], [http://www.ebi.ac.uk/pdbsum/1msb PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ms/1msb_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Calcium-dependent (C-type) animal lectins participate in many cell surface recognition events mediated by protein-carbohydrate interactions. The C-type lectin family includes cell adhesion molecules, endocytic receptors, and extracellular matrix proteins. Mammalian mannose-binding proteins are C-type lectins that function in antibody-independent host defense against pathogens. The crystal structure of the carbohydrate-recognition domain of a rat mannose-binding protein, determined as the holmium-substituted complex by multiwavelength anomalous dispersion (MAD) phasing, reveals an unusual fold consisting of two distinct regions, one of which contains extensive nonregular secondary structure stabilized by two holmium ions. The structure explains the conservation of 32 residues in all C-type carbohydrate-recognition domains, suggesting that the fold seen here is common to these domains. The strong anomalous scattering observed at the Ho LIII edge demonstrates that traditional heavy atom complexes will be generally amenable to the MAD phasing method.


{{STRUCTURE_1msb|  PDB=1msb  |  SCENE=  }}
Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing.,Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA Science. 1991 Dec 13;254(5038):1608-15. PMID:1721241<ref>PMID:1721241</ref>


===STRUCTURE OF THE CALCIUM-DEPENDENT LECTIN DOMAIN FROM A RAT MANNOSE-BINDING PROTEIN DETERMINED BY MAD PHASING===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_1721241}}
== References ==
 
<references/>
==About this Structure==
__TOC__
[[1msb]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Rattus_rattus Rattus rattus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MSB OCA].
</StructureSection>
 
==Reference==
<ref group="xtra">PMID:001721241</ref><references group="xtra"/>
[[Category: Rattus rattus]]
[[Category: Rattus rattus]]
[[Category: Drickamer, K.]]
[[Category: Drickamer, K.]]

Revision as of 19:46, 28 September 2014

STRUCTURE OF THE CALCIUM-DEPENDENT LECTIN DOMAIN FROM A RAT MANNOSE-BINDING PROTEIN DETERMINED BY MAD PHASINGSTRUCTURE OF THE CALCIUM-DEPENDENT LECTIN DOMAIN FROM A RAT MANNOSE-BINDING PROTEIN DETERMINED BY MAD PHASING

Structural highlights

1msb is a 2 chain structure with sequence from Rattus rattus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Calcium-dependent (C-type) animal lectins participate in many cell surface recognition events mediated by protein-carbohydrate interactions. The C-type lectin family includes cell adhesion molecules, endocytic receptors, and extracellular matrix proteins. Mammalian mannose-binding proteins are C-type lectins that function in antibody-independent host defense against pathogens. The crystal structure of the carbohydrate-recognition domain of a rat mannose-binding protein, determined as the holmium-substituted complex by multiwavelength anomalous dispersion (MAD) phasing, reveals an unusual fold consisting of two distinct regions, one of which contains extensive nonregular secondary structure stabilized by two holmium ions. The structure explains the conservation of 32 residues in all C-type carbohydrate-recognition domains, suggesting that the fold seen here is common to these domains. The strong anomalous scattering observed at the Ho LIII edge demonstrates that traditional heavy atom complexes will be generally amenable to the MAD phasing method.

Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing.,Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA Science. 1991 Dec 13;254(5038):1608-15. PMID:1721241[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science. 1991 Dec 13;254(5038):1608-15. PMID:1721241

1msb, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA