1lln: Difference between revisions
m Protected "1lln" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==1.6A CRYSTAL STRUCTURE OF POKEWEED ANTIVIRAL PROTEIN-III (PAP-III) WITH METHYLATED LYSINES== | ||
<StructureSection load='1lln' size='340' side='right' caption='[[1lln]], [[Resolution|resolution]] 1.60Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1lln]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Phytolacca_americana Phytolacca americana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1LLN OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1LLN FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MLY:N-DIMETHYL-LYSINE'>MLY</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1qcg|1qcg]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/rRNA_N-glycosylase rRNA N-glycosylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.2.22 3.2.2.22] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1lln FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1lln OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1lln RCSB], [http://www.ebi.ac.uk/pdbsum/1lln PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ll/1lln_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Pokeweed antiviral protein III (PAP-III), a naturally occurring protein isolated from late summer leaves of the pokeweed plant (Phytolacca americana), has potent anti-HIV activity by an as yet undetermined molecular mechanism. PAP-III belongs to a family of ribosome-inactivating proteins that catalytically deadenylate ribosomal and viral RNA. The chemical modification of PAP-III by reductive methylation of its lysine residues significantly improved the crystal quality for X-ray diffraction studies. Trigonal crystals of the modified PAP-III, with unit cell parameters a=b=80.47A, c=76.21A, were obtained using 30% PEG400 as the precipitant. These crystals contained one enzyme molecule per asymmetric unit and diffracted up to 1.5A, when exposed to a synchrotron source. Here we report the X-ray crystal structure of PAP-III at 1.6A resolution, which was solved by molecular replacement using the homology model of PAP-III as a search model. The fold typical of other ribosome-inactivating proteins is conserved, despite several differences on the surface and in the loop regions. Residues Tyr(69), Tyr(117), Glu(172), and Arg(175) are expected to define the active site of PAP-III. Molecular modeling studies of the interactions of PAP-III and PAP-I with a single-stranded RNA heptamer predicted a more potent anti-HIV activity for PAP-III due to its unique surface topology and more favorable charge distribution in its 20A-long RNA binding active center cleft. In accordance with the predictions of the modeling studies, PAP-III was more potent than PAP-I in depurinating HIV-1 RNA. | |||
High resolution X-ray structure of potent anti-HIV pokeweed antiviral protein-III.,Kurinov IV, Uckun FM Biochem Pharmacol. 2003 May 15;65(10):1709-17. PMID:12754107<ref>PMID:12754107</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
< | |||
[[Category: Phytolacca americana]] | [[Category: Phytolacca americana]] | ||
[[Category: RRNA N-glycosylase]] | [[Category: RRNA N-glycosylase]] |
Revision as of 18:51, 28 September 2014
1.6A CRYSTAL STRUCTURE OF POKEWEED ANTIVIRAL PROTEIN-III (PAP-III) WITH METHYLATED LYSINES1.6A CRYSTAL STRUCTURE OF POKEWEED ANTIVIRAL PROTEIN-III (PAP-III) WITH METHYLATED LYSINES
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedPokeweed antiviral protein III (PAP-III), a naturally occurring protein isolated from late summer leaves of the pokeweed plant (Phytolacca americana), has potent anti-HIV activity by an as yet undetermined molecular mechanism. PAP-III belongs to a family of ribosome-inactivating proteins that catalytically deadenylate ribosomal and viral RNA. The chemical modification of PAP-III by reductive methylation of its lysine residues significantly improved the crystal quality for X-ray diffraction studies. Trigonal crystals of the modified PAP-III, with unit cell parameters a=b=80.47A, c=76.21A, were obtained using 30% PEG400 as the precipitant. These crystals contained one enzyme molecule per asymmetric unit and diffracted up to 1.5A, when exposed to a synchrotron source. Here we report the X-ray crystal structure of PAP-III at 1.6A resolution, which was solved by molecular replacement using the homology model of PAP-III as a search model. The fold typical of other ribosome-inactivating proteins is conserved, despite several differences on the surface and in the loop regions. Residues Tyr(69), Tyr(117), Glu(172), and Arg(175) are expected to define the active site of PAP-III. Molecular modeling studies of the interactions of PAP-III and PAP-I with a single-stranded RNA heptamer predicted a more potent anti-HIV activity for PAP-III due to its unique surface topology and more favorable charge distribution in its 20A-long RNA binding active center cleft. In accordance with the predictions of the modeling studies, PAP-III was more potent than PAP-I in depurinating HIV-1 RNA. High resolution X-ray structure of potent anti-HIV pokeweed antiviral protein-III.,Kurinov IV, Uckun FM Biochem Pharmacol. 2003 May 15;65(10):1709-17. PMID:12754107[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References |
|