1n32: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Structure of the Thermus thermophilus 30S ribosomal subunit bound to codon and near-cognate transfer RNA anticodon stem-loop mismatched at the first codon position at the a site with paromomycin== | ||
<StructureSection load='1n32' size='340' side='right' caption='[[1n32]], [[Resolution|resolution]] 3.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1n32]] is a 23 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermus_thermophilus Thermus thermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1N32 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1N32 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PAR:PAROMOMYCIN'>PAR</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1j5e|1j5e]], [[1fjg|1fjg]], [[1ibl|1ibl]], [[1ibk|1ibk]], [[1ibm|1ibm]], [[1n33|1n33]], [[1n34|1n34]], [[1n36|1n36]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1n32 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1n32 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1n32 RCSB], [http://www.ebi.ac.uk/pdbsum/1n32 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/n3/1n32_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
A structural and mechanistic explanation for the selection of tRNAs by the ribosome has been elusive. Here, we report crystal structures of the 30S ribosomal subunit with codon and near-cognate tRNA anticodon stem loops bound at the decoding center and compare affinities of equivalent complexes in solution. In ribosomal interactions with near-cognate tRNA, deviation from Watson-Crick geometry results in uncompensated desolvation of hydrogen-bonding partners at the codon-anticodon minor groove. As a result, the transition to a closed form of the 30S induced by cognate tRNA is unfavorable for near-cognate tRNA unless paromomycin induces part of the rearrangement. We conclude that stabilization of a closed 30S conformation is required for tRNA selection, and thereby structurally rationalize much previous data on translational fidelity. | |||
Selection of tRNA by the ribosome requires a transition from an open to a closed form.,Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V Cell. 2002 Nov 27;111(5):721-32. PMID:12464183<ref>PMID:12464183</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Ribosomal protein THX|Ribosomal protein THX]] | *[[Ribosomal protein THX|Ribosomal protein THX]] | ||
*[[Ribosome|Ribosome]] | *[[Ribosome 3D structures|Ribosome 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Thermus thermophilus]] | [[Category: Thermus thermophilus]] | ||
[[Category: IV, F V.Murphy.]] | [[Category: IV, F V.Murphy.]] |
Revision as of 17:43, 28 September 2014
Structure of the Thermus thermophilus 30S ribosomal subunit bound to codon and near-cognate transfer RNA anticodon stem-loop mismatched at the first codon position at the a site with paromomycinStructure of the Thermus thermophilus 30S ribosomal subunit bound to codon and near-cognate transfer RNA anticodon stem-loop mismatched at the first codon position at the a site with paromomycin
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedA structural and mechanistic explanation for the selection of tRNAs by the ribosome has been elusive. Here, we report crystal structures of the 30S ribosomal subunit with codon and near-cognate tRNA anticodon stem loops bound at the decoding center and compare affinities of equivalent complexes in solution. In ribosomal interactions with near-cognate tRNA, deviation from Watson-Crick geometry results in uncompensated desolvation of hydrogen-bonding partners at the codon-anticodon minor groove. As a result, the transition to a closed form of the 30S induced by cognate tRNA is unfavorable for near-cognate tRNA unless paromomycin induces part of the rearrangement. We conclude that stabilization of a closed 30S conformation is required for tRNA selection, and thereby structurally rationalize much previous data on translational fidelity. Selection of tRNA by the ribosome requires a transition from an open to a closed form.,Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V Cell. 2002 Nov 27;111(5):721-32. PMID:12464183[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|