1o7q: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==ROLES OF INDIVIDUAL RESIDUES OF ALPHA-1,3 GALACTOSYLTRANSFERASES IN SUBSTRATE BINDING AND CATALYSIS== | ||
<StructureSection load='1o7q' size='340' side='right' caption='[[1o7q]], [[Resolution|resolution]] 1.30Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1o7q]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1O7Q OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1O7Q FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=UDP:URIDINE-5-DIPHOSPHATE'>UDP</scene>, <scene name='pdbligand=GAL:BETA-D-GALACTOSE'>GAL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1fg5|1fg5]], [[1g8o|1g8o]], [[1g93|1g93]], [[1gwv|1gwv]], [[1gww|1gww]], [[1gx0|1gx0]], [[1gx4|1gx4]], [[1k4v|1k4v]], [[1o7o|1o7o]], [[1o7r|1o7r]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/N-acetyllactosaminide_3-alpha-galactosyltransferase N-acetyllactosaminide 3-alpha-galactosyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.87 2.4.1.87] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1o7q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1o7q OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1o7q RCSB], [http://www.ebi.ac.uk/pdbsum/1o7q PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/o7/1o7q_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The retaining glycosyltransferase, alpha-1,3-galactosyltransferase (alpha3GT), is mutationally inactivated in humans, leading to the presence of circulating antibodies against its product, the alpha-Gal epitope. alpha3GT catalyzes galactose transfer from UDP-Gal to beta-linked galactosides, such as lactose, and in the absence of an acceptor substrate, to water at a lower rate. We have used site-directed mutagenesis to investigate the roles in catalysis and specificity of residues in alpha3GT that form H-bonds as well as other interactions with substrates. Mutation of the conserved Glu(317) to Gln weakens lactose binding and reduces the k(cat) for galactosyltransfer to lactose and water by 2400 and 120, respectively. The structure is not perturbed by this substitution, but the orientation of the bound lactose molecule is changed. The magnitude of these changes does not support a previous proposal that Glu(317) is the catalytic nucleophile in a double displacement mechanism and suggests it acts in acceptor substrate binding and in stabilizing a cationic transition state for cleavage of the bond between UDP and C1 of the galactose. Cleavage of this bond also linked to a conformational change in the C-terminal region of alpha3GT that is coupled with UDP binding. Mutagenesis indicates that His(280), which is projected to interact with the 2-OH of the galactose moiety of UDP-Gal, is a key residue in the stringent donor substrate specificity through its role in stabilizing the bound UDP-Gal in a suitable conformation for catalysis. Mutation of Gln(247), which forms multiple interactions with acceptor substrates, to Glu reduces the catalytic rate of galactose transfer to lactose but not to water. This mutation is predicted to perturb the orientation or environment of the bound acceptor substrate. The results highlight the importance of H-bonds between enzyme and substrates in this glycosyltransferase, in arranging substrates in appropriate conformations and orientation for efficient catalysis. These factors are manifested in increases in catalytic rate rather than substrate affinity. | |||
Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity.,Zhang Y, Swaminathan GJ, Deshpande A, Boix E, Natesh R, Xie Z, Acharya KR, Brew K Biochemistry. 2003 Nov 25;42(46):13512-21. PMID:14621997<ref>PMID:14621997</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[ | *[[Glycosyltransferase|Glycosyltransferase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Bos taurus]] | [[Category: Bos taurus]] | ||
[[Category: N-acetyllactosaminide 3-alpha-galactosyltransferase]] | [[Category: N-acetyllactosaminide 3-alpha-galactosyltransferase]] |
Revision as of 16:47, 28 September 2014
ROLES OF INDIVIDUAL RESIDUES OF ALPHA-1,3 GALACTOSYLTRANSFERASES IN SUBSTRATE BINDING AND CATALYSISROLES OF INDIVIDUAL RESIDUES OF ALPHA-1,3 GALACTOSYLTRANSFERASES IN SUBSTRATE BINDING AND CATALYSIS
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe retaining glycosyltransferase, alpha-1,3-galactosyltransferase (alpha3GT), is mutationally inactivated in humans, leading to the presence of circulating antibodies against its product, the alpha-Gal epitope. alpha3GT catalyzes galactose transfer from UDP-Gal to beta-linked galactosides, such as lactose, and in the absence of an acceptor substrate, to water at a lower rate. We have used site-directed mutagenesis to investigate the roles in catalysis and specificity of residues in alpha3GT that form H-bonds as well as other interactions with substrates. Mutation of the conserved Glu(317) to Gln weakens lactose binding and reduces the k(cat) for galactosyltransfer to lactose and water by 2400 and 120, respectively. The structure is not perturbed by this substitution, but the orientation of the bound lactose molecule is changed. The magnitude of these changes does not support a previous proposal that Glu(317) is the catalytic nucleophile in a double displacement mechanism and suggests it acts in acceptor substrate binding and in stabilizing a cationic transition state for cleavage of the bond between UDP and C1 of the galactose. Cleavage of this bond also linked to a conformational change in the C-terminal region of alpha3GT that is coupled with UDP binding. Mutagenesis indicates that His(280), which is projected to interact with the 2-OH of the galactose moiety of UDP-Gal, is a key residue in the stringent donor substrate specificity through its role in stabilizing the bound UDP-Gal in a suitable conformation for catalysis. Mutation of Gln(247), which forms multiple interactions with acceptor substrates, to Glu reduces the catalytic rate of galactose transfer to lactose but not to water. This mutation is predicted to perturb the orientation or environment of the bound acceptor substrate. The results highlight the importance of H-bonds between enzyme and substrates in this glycosyltransferase, in arranging substrates in appropriate conformations and orientation for efficient catalysis. These factors are manifested in increases in catalytic rate rather than substrate affinity. Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity.,Zhang Y, Swaminathan GJ, Deshpande A, Boix E, Natesh R, Xie Z, Acharya KR, Brew K Biochemistry. 2003 Nov 25;42(46):13512-21. PMID:14621997[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|