1hz1: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==RIBONUCLEASE T1 V16A MUTANT IN COMPLEX WITH MG2+== | ||
<StructureSection load='1hz1' size='340' side='right' caption='[[1hz1]], [[Resolution|resolution]] 1.80Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1hz1]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aspergillus_niger Aspergillus niger]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HZ1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1HZ1 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=2GP:GUANOSINE-2-MONOPHOSPHATE'>2GP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene><br> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ribonuclease_T(1) Ribonuclease T(1)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.27.3 3.1.27.3] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1hz1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hz1 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1hz1 RCSB], [http://www.ebi.ac.uk/pdbsum/1hz1 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hz/1hz1_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
In the crystalline state, ribonuclease T1 binds calcium ions at different lattice-dependent positions. In solution, its conformational stability is also remarkably increased in the presence of divalent metal ions. Combining urea unfolding studies and X-ray crystallography, we compared the presence of several metal ions at specific sites in the protein to their contribution to the overall stabilizing effect in solution. We constructed thermodynamic cycles involving particular metal ions and specific carboxylate functions. The resulting coupling energies indicate that some (but not all) metal ions found at lattice contacts in crystal structures may indeed significantly contribute to stability enhancement in the presence of metal ions in solution. | |||
The contribution of metal ions to the conformational stability of ribonuclease T1: crystal versus solution.,Deswarte J, De Vos S, Langhorst U, Steyaert J, Loris R Eur J Biochem. 2001 Jul;268(14):3993-4000. PMID:11453993<ref>PMID:11453993</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Ribonuclease|Ribonuclease]] | *[[Ribonuclease|Ribonuclease]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Aspergillus niger]] | [[Category: Aspergillus niger]] | ||
[[Category: Langhorst, U.]] | [[Category: Langhorst, U.]] |
Revision as of 14:11, 28 September 2014
RIBONUCLEASE T1 V16A MUTANT IN COMPLEX WITH MG2+RIBONUCLEASE T1 V16A MUTANT IN COMPLEX WITH MG2+
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIn the crystalline state, ribonuclease T1 binds calcium ions at different lattice-dependent positions. In solution, its conformational stability is also remarkably increased in the presence of divalent metal ions. Combining urea unfolding studies and X-ray crystallography, we compared the presence of several metal ions at specific sites in the protein to their contribution to the overall stabilizing effect in solution. We constructed thermodynamic cycles involving particular metal ions and specific carboxylate functions. The resulting coupling energies indicate that some (but not all) metal ions found at lattice contacts in crystal structures may indeed significantly contribute to stability enhancement in the presence of metal ions in solution. The contribution of metal ions to the conformational stability of ribonuclease T1: crystal versus solution.,Deswarte J, De Vos S, Langhorst U, Steyaert J, Loris R Eur J Biochem. 2001 Jul;268(14):3993-4000. PMID:11453993[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|