1hd3: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==A-SPECTRIN SH3 DOMAIN F52Y MUTANT== | ||
<StructureSection load='1hd3' size='340' side='right' caption='[[1hd3]], [[Resolution|resolution]] 1.98Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1hd3]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HD3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1HD3 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1shg|1shg]], [[1aey|1aey]], [[1aj3|1aj3]], [[1bk2|1bk2]], [[1cun|1cun]], [[1e6g|1e6g]], [[1e6h|1e6h]], [[1e7o|1e7o]], [[1pwt|1pwt]], [[1qkw|1qkw]], [[1qkx|1qkx]], [[1tuc|1tuc]], [[1tud|1tud]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1hd3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hd3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1hd3 RCSB], [http://www.ebi.ac.uk/pdbsum/1hd3 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hd/1hd3_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Here we present a method for determining the inference of non-native conformations in the folding of a small domain, alpha-spectrin Src homology 3 domain. This method relies on the preservation of all native interactions after Tyr/Phe exchanges in solvent-exposed, contact-free positions. Minor changes in solvent exposure and free energy of the denatured ensemble are in agreement with the reverse hydrophobic effect, as the Tyr/Phe mutations slightly change the polypeptide hydrophilic/hydrophobic balance. Interestingly, more important Gibbs energy variations are observed in the transition state ensemble (TSE). Considering the small changes induced by the H/OH replacements, the observed energy variations in the TSE are rather notable, but of a magnitude that would remain undetected under regular mutations that alter the folded structure free energy. Hydrophobic residues outside of the folding nucleus contribute to the stability of the TSE in an unspecific nonlinear manner, producing a significant acceleration of both unfolding and refolding rates, with little effect on stability. These results suggest that sectors of the protein transiently reside in non-native areas of the landscape during folding, with implications in the reading of phi values from protein engineering experiments. Contrary to previous proposals, the principle that emerges is that non-native contacts, or conformations, could be beneficial in evolution and design of some fast folding proteins. | |||
Unspecific hydrophobic stabilization of folding transition states.,Viguera AR, Vega C, Serrano L Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5349-54. PMID:11959988<ref>PMID:11959988</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Spectrin|Spectrin]] | *[[Spectrin|Spectrin]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Gallus gallus]] | [[Category: Gallus gallus]] | ||
[[Category: Serrano, L.]] | [[Category: Serrano, L.]] |
Revision as of 12:18, 28 September 2014
A-SPECTRIN SH3 DOMAIN F52Y MUTANTA-SPECTRIN SH3 DOMAIN F52Y MUTANT
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHere we present a method for determining the inference of non-native conformations in the folding of a small domain, alpha-spectrin Src homology 3 domain. This method relies on the preservation of all native interactions after Tyr/Phe exchanges in solvent-exposed, contact-free positions. Minor changes in solvent exposure and free energy of the denatured ensemble are in agreement with the reverse hydrophobic effect, as the Tyr/Phe mutations slightly change the polypeptide hydrophilic/hydrophobic balance. Interestingly, more important Gibbs energy variations are observed in the transition state ensemble (TSE). Considering the small changes induced by the H/OH replacements, the observed energy variations in the TSE are rather notable, but of a magnitude that would remain undetected under regular mutations that alter the folded structure free energy. Hydrophobic residues outside of the folding nucleus contribute to the stability of the TSE in an unspecific nonlinear manner, producing a significant acceleration of both unfolding and refolding rates, with little effect on stability. These results suggest that sectors of the protein transiently reside in non-native areas of the landscape during folding, with implications in the reading of phi values from protein engineering experiments. Contrary to previous proposals, the principle that emerges is that non-native contacts, or conformations, could be beneficial in evolution and design of some fast folding proteins. Unspecific hydrophobic stabilization of folding transition states.,Viguera AR, Vega C, Serrano L Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5349-54. PMID:11959988[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|