1gxu: Difference between revisions
m Protected "1gxu" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==HYDROGENASE MATURATION PROTEIN HYPF "ACYLPHOSPHATASE-LIKE" N-TERMINAL DOMAIN (HYPF-ACP) IN COMPLEX WITH A SUBSTRATE. CRYSTAL GROWN IN THE PRESENCE OF CARBAMOYLPHOSPHATE== | ||
<StructureSection load='1gxu' size='340' side='right' caption='[[1gxu]], [[Resolution|resolution]] 1.27Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1gxu]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GXU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1GXU FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=2HP:DIHYDROGENPHOSPHATE+ION'>2HP</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1gxt|1gxt]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1gxu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gxu OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1gxu RCSB], [http://www.ebi.ac.uk/pdbsum/1gxu PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gx/1gxu_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
[NiFe]-hydrogenases require a set of complementary and regulatory proteins for correct folding and maturation processes. One of the essential regulatory proteins, HypF (82kDa) contains a N-terminal acylphosphatase (ACT)-like domain, a sequence motif shared with enzymes catalyzing O-carbamoylation, and two zinc finger motifs similar to those found in the DnaJ chaperone. The HypF acylphosphatase domain is thought to support the conversion of carbamoylphosphate into CO and CN(-), promoting coordination of these ligands to the hydrogenase metal cluster. It has been shown recently that the HypF N-terminal domain can aggregate in vitro to yield fibrils matching those formed by proteins linked to amyloid diseases. The 1.27A resolution HypF acylphosphatase domain crystal structure (residues 1-91; R-factor 13.1%) shows a domain fold of betaalphabetabetaalphabeta topology, as observed in mammalian acylphosphatases specifically catalyzing the hydrolysis of the carboxyl-phosphate bonds in acylphosphates. The HypF N-terminal domain can be assigned to the ferredoxin structural superfamily, to which RNA-binding domains of small nuclear ribonucleoproteins and some metallochaperone proteins belong. Additionally, the HypF N-terminal domain displays an intriguing structural relationship to the recently discovered ACT domains. The structures of different HypF acylphosphatase domain complexes show a phosphate binding cradle comparable to the P-loop observed in unrelated phosphatase families. On the basis of the catalytic mechanism proposed for acylphosphatases, whereby residues Arg23 and Asn41 would support substrate orientation and the nucleophilic attack of a water molecule on the phosphate group, fine structural features of the HypF N-terminal domain putative active site region may account for the lack of acylphosphatase activity observed for the expressed domain. The crystallographic analyses here reported were undertaken to shed light on the molecular bases of inactivity, folding, misfolding and aggregation of the HypF N-terminal acylphosphatase domain. | |||
Crystal structure and anion binding in the prokaryotic hydrogenase maturation factor HypF acylphosphatase-like domain.,Rosano C, Zuccotti S, Bucciantini M, Stefani M, Ramponi G, Bolognesi M J Mol Biol. 2002 Aug 30;321(5):785-96. PMID:12206761<ref>PMID:12206761</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
< | |||
[[Category: Bolognesi, M.]] | [[Category: Bolognesi, M.]] | ||
[[Category: Bucciantini, M.]] | [[Category: Bucciantini, M.]] |
Revision as of 12:03, 28 September 2014
HYDROGENASE MATURATION PROTEIN HYPF "ACYLPHOSPHATASE-LIKE" N-TERMINAL DOMAIN (HYPF-ACP) IN COMPLEX WITH A SUBSTRATE. CRYSTAL GROWN IN THE PRESENCE OF CARBAMOYLPHOSPHATEHYDROGENASE MATURATION PROTEIN HYPF "ACYLPHOSPHATASE-LIKE" N-TERMINAL DOMAIN (HYPF-ACP) IN COMPLEX WITH A SUBSTRATE. CRYSTAL GROWN IN THE PRESENCE OF CARBAMOYLPHOSPHATE
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMed[NiFe]-hydrogenases require a set of complementary and regulatory proteins for correct folding and maturation processes. One of the essential regulatory proteins, HypF (82kDa) contains a N-terminal acylphosphatase (ACT)-like domain, a sequence motif shared with enzymes catalyzing O-carbamoylation, and two zinc finger motifs similar to those found in the DnaJ chaperone. The HypF acylphosphatase domain is thought to support the conversion of carbamoylphosphate into CO and CN(-), promoting coordination of these ligands to the hydrogenase metal cluster. It has been shown recently that the HypF N-terminal domain can aggregate in vitro to yield fibrils matching those formed by proteins linked to amyloid diseases. The 1.27A resolution HypF acylphosphatase domain crystal structure (residues 1-91; R-factor 13.1%) shows a domain fold of betaalphabetabetaalphabeta topology, as observed in mammalian acylphosphatases specifically catalyzing the hydrolysis of the carboxyl-phosphate bonds in acylphosphates. The HypF N-terminal domain can be assigned to the ferredoxin structural superfamily, to which RNA-binding domains of small nuclear ribonucleoproteins and some metallochaperone proteins belong. Additionally, the HypF N-terminal domain displays an intriguing structural relationship to the recently discovered ACT domains. The structures of different HypF acylphosphatase domain complexes show a phosphate binding cradle comparable to the P-loop observed in unrelated phosphatase families. On the basis of the catalytic mechanism proposed for acylphosphatases, whereby residues Arg23 and Asn41 would support substrate orientation and the nucleophilic attack of a water molecule on the phosphate group, fine structural features of the HypF N-terminal domain putative active site region may account for the lack of acylphosphatase activity observed for the expressed domain. The crystallographic analyses here reported were undertaken to shed light on the molecular bases of inactivity, folding, misfolding and aggregation of the HypF N-terminal acylphosphatase domain. Crystal structure and anion binding in the prokaryotic hydrogenase maturation factor HypF acylphosphatase-like domain.,Rosano C, Zuccotti S, Bucciantini M, Stefani M, Ramponi G, Bolognesi M J Mol Biol. 2002 Aug 30;321(5):785-96. PMID:12206761[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References |
|