4d0o: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4d0o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4d0o OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4d0o RCSB], [http://www.ebi.ac.uk/pdbsum/4d0o PDBsum]</span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4d0o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4d0o OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4d0o RCSB], [http://www.ebi.ac.uk/pdbsum/4d0o PDBsum]</span></td></tr>
<table>
<table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The RhoGEF domain of AKAP-Lbc (AKAP13) catalyses nucleotide exchange on RhoA and is involved in development of cardiac hypertrophy. The RhoGEF activity of AKAP-Lbc has also been implicated in cancer. We have determined the X-ray crystal structure of the complex between RhoA:GDP and the AKAP-Lbc RhoGEF (DH-PH) domain to 2.1 A resolution. The structure reveals important differences compared to related RhoGEF proteins such as Leukemia-associated RhoGEF. Nucleotide exchange assays comparing the activity of the DH-PH domain to the DH domain alone showed no role for the PH domain in nucleotide exchange, which is explained by the RhoA:AKAP-Lbc structure. Comparison to a structure of the isolated AKAP-Lbc DH domain revealed a change in conformation of the N-terminal 'GEF switch' region upon binding to RhoA. Isothermal titration calorimetry showed that AKAP-Lbc has only micromolar affinity for RhoA which combined with the presence of potential binding pockets for small molecules on AKAP-Lbc raises the possibility of targeting AKAP-Lbc with guanine nucleotide exchange factor inhibitors.
The Crystal Structure of the RhoA : AKAP-Lbc DH-PH Domain Complex.,Abdul Azeez KR, Knapp S, Fernandes JM, Klussmann E, Elkins JM Biochem J. 2014 Sep 4. PMID:25186459<ref>PMID:25186459</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 09:02, 24 September 2014

AKAP13 (AKAP-Lbc) DH domainAKAP13 (AKAP-Lbc) DH domain

Structural highlights

4d0o is a 2 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Related:4d0n
Resources:FirstGlance, OCA, RCSB, PDBsum

Publication Abstract from PubMed

The RhoGEF domain of AKAP-Lbc (AKAP13) catalyses nucleotide exchange on RhoA and is involved in development of cardiac hypertrophy. The RhoGEF activity of AKAP-Lbc has also been implicated in cancer. We have determined the X-ray crystal structure of the complex between RhoA:GDP and the AKAP-Lbc RhoGEF (DH-PH) domain to 2.1 A resolution. The structure reveals important differences compared to related RhoGEF proteins such as Leukemia-associated RhoGEF. Nucleotide exchange assays comparing the activity of the DH-PH domain to the DH domain alone showed no role for the PH domain in nucleotide exchange, which is explained by the RhoA:AKAP-Lbc structure. Comparison to a structure of the isolated AKAP-Lbc DH domain revealed a change in conformation of the N-terminal 'GEF switch' region upon binding to RhoA. Isothermal titration calorimetry showed that AKAP-Lbc has only micromolar affinity for RhoA which combined with the presence of potential binding pockets for small molecules on AKAP-Lbc raises the possibility of targeting AKAP-Lbc with guanine nucleotide exchange factor inhibitors.

The Crystal Structure of the RhoA : AKAP-Lbc DH-PH Domain Complex.,Abdul Azeez KR, Knapp S, Fernandes JM, Klussmann E, Elkins JM Biochem J. 2014 Sep 4. PMID:25186459[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Abdul Azeez KR, Knapp S, Fernandes JM, Klussmann E, Elkins JM. The Crystal Structure of the RhoA : AKAP-Lbc DH-PH Domain Complex. Biochem J. 2014 Sep 4. PMID:25186459 doi:http://dx.doi.org/10.1042/BJ20140606

4d0o, resolution 2.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA