1csw: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==REPLACEMENTS IN A CONSERVED LEUCINE CLUSTER IN THE HYDROPHOBIC HEME POCKET OF CYTOCHROME C== | ||
<StructureSection load='1csw' size='340' side='right' caption='[[1csw]], [[Resolution|resolution]] 1.90Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1csw]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CSW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1CSW FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=M3L:N-TRIMETHYLLYSINE'>M3L</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ycc|1ycc]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1csw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1csw OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1csw RCSB], [http://www.ebi.ac.uk/pdbsum/1csw PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cs/1csw_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
A cluster of highly conserved leucine side chains from residues 9, 68, 85, 94, and 98 is located in the hydrophobic heme pocket of cytochrome c. The contributions of two of these, Leu 85 and Leu 94, have been studied using a protein structure-function-mutagenesis approach to probe their roles in the maintenance of overall structural integrity and electron transfer activity. Structural studies of the L85C, L85F, L85M, and L94S mutant proteins show that, in each case, the overall fold of cytochrome c is retained, but that localized conformational shifts are required to accommodate the introduced side chains. In particular, the side chains of Cys 85 and Phe 85 form energetically favorable interactions with Phe 82, whereas Met 85 takes on a more remote conformation to prevent an unfavorable interaction with the phenyl ring of Phe 82. In the case of the L94S mutant protein, the new polar group introduced is found to form hydrogen bonds to nearby carbonyl groups. In all proteins with substitutions at Leu 85, the hydrophobic nature of the heme pocket is preserved and no significant decrease in heme reduction potential is observed. Despite earlier predictions that Leu 85 is an important determinant in cytochrome c electron transfer partner complexation, our studies show this is unlikely to be the case because the considerable surface contour perturbations made by substitutions at this residue do not correspondingly translate into significant changes in electron transfer rates. For the L94S mutant protein, the substitution of a polar hydroxyl group directly into the hydrophobic heme pocket has a larger effect on heme reduction potential, but this is mitigated by two factors. First, the side chain of Ser 94 is rotated away from the heme group and, second, the side chain of Leu 98 shifts into a portion of the new space available, partially shielding the heme group. The Leu 94 Ser substitution does not perturb the highly conserved interface formed by the nearly perpendicular packing of the N- and C-terminal helices of cytochrome c, ruling this out as the cause of this mutant protein becoming thermally labile and having a lower functional activity. Our results show these effects are most likely attributable to disruption of the heme pocket region. Much of the ability of cytochrome c to absorb the introduction of mutations at Leu 85 and Leu 94 appears to be a consequence of the conformational flexibility afforded by the leucine cluster in this region as well as the presence of a nearby internal cavity.(ABSTRACT TRUNCATED AT 400 WORDS) | |||
Replacements in a conserved leucine cluster in the hydrophobic heme pocket of cytochrome c.,Lo TP, Murphy ME, Guillemette JG, Smith M, Brayer GD Protein Sci. 1995 Feb;4(2):198-208. PMID:7757009<ref>PMID:7757009</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Cytochrome c|Cytochrome c]] | *[[Cytochrome c|Cytochrome c]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Saccharomyces cerevisiae]] | [[Category: Saccharomyces cerevisiae]] | ||
[[Category: Brayer, G D.]] | [[Category: Brayer, G D.]] | ||
[[Category: Lo, T P.]] | [[Category: Lo, T P.]] |
Revision as of 12:23, 27 August 2014
REPLACEMENTS IN A CONSERVED LEUCINE CLUSTER IN THE HYDROPHOBIC HEME POCKET OF CYTOCHROME CREPLACEMENTS IN A CONSERVED LEUCINE CLUSTER IN THE HYDROPHOBIC HEME POCKET OF CYTOCHROME C
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedA cluster of highly conserved leucine side chains from residues 9, 68, 85, 94, and 98 is located in the hydrophobic heme pocket of cytochrome c. The contributions of two of these, Leu 85 and Leu 94, have been studied using a protein structure-function-mutagenesis approach to probe their roles in the maintenance of overall structural integrity and electron transfer activity. Structural studies of the L85C, L85F, L85M, and L94S mutant proteins show that, in each case, the overall fold of cytochrome c is retained, but that localized conformational shifts are required to accommodate the introduced side chains. In particular, the side chains of Cys 85 and Phe 85 form energetically favorable interactions with Phe 82, whereas Met 85 takes on a more remote conformation to prevent an unfavorable interaction with the phenyl ring of Phe 82. In the case of the L94S mutant protein, the new polar group introduced is found to form hydrogen bonds to nearby carbonyl groups. In all proteins with substitutions at Leu 85, the hydrophobic nature of the heme pocket is preserved and no significant decrease in heme reduction potential is observed. Despite earlier predictions that Leu 85 is an important determinant in cytochrome c electron transfer partner complexation, our studies show this is unlikely to be the case because the considerable surface contour perturbations made by substitutions at this residue do not correspondingly translate into significant changes in electron transfer rates. For the L94S mutant protein, the substitution of a polar hydroxyl group directly into the hydrophobic heme pocket has a larger effect on heme reduction potential, but this is mitigated by two factors. First, the side chain of Ser 94 is rotated away from the heme group and, second, the side chain of Leu 98 shifts into a portion of the new space available, partially shielding the heme group. The Leu 94 Ser substitution does not perturb the highly conserved interface formed by the nearly perpendicular packing of the N- and C-terminal helices of cytochrome c, ruling this out as the cause of this mutant protein becoming thermally labile and having a lower functional activity. Our results show these effects are most likely attributable to disruption of the heme pocket region. Much of the ability of cytochrome c to absorb the introduction of mutations at Leu 85 and Leu 94 appears to be a consequence of the conformational flexibility afforded by the leucine cluster in this region as well as the presence of a nearby internal cavity.(ABSTRACT TRUNCATED AT 400 WORDS) Replacements in a conserved leucine cluster in the hydrophobic heme pocket of cytochrome c.,Lo TP, Murphy ME, Guillemette JG, Smith M, Brayer GD Protein Sci. 1995 Feb;4(2):198-208. PMID:7757009[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|