1cr4: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:1cr4.png|left|200px]]
==CRYSTAL STRUCTURE OF THE HELICASE DOMAIN OF THE GENE 4 PROTEIN OF BACTERIOPHAGE T7: COMPLEX WITH DTDP==
<StructureSection load='1cr4' size='340' side='right' caption='[[1cr4]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1cr4]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t7 Enterobacteria phage t7]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CR4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1CR4 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TYD:THYMIDINE-5-DIPHOSPHATE'>TYD</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1cr0|1cr0]], [[1cr1|1cr1]], [[1cr2|1cr2]]</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1cr4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1cr4 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1cr4 RCSB], [http://www.ebi.ac.uk/pdbsum/1cr4 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cr/1cr4_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Helicases that unwind DNA at the replication fork are ring-shaped oligomeric enzymes that move along one strand of a DNA duplex and catalyze the displacement of the complementary strand in a reaction that is coupled to nucleotide hydrolysis. The helicase domain of the replicative helicase-primase protein from bacteriophage T7 crystallized as a helical filament that resembles the Escherichia coli RecA protein, an ATP-dependent DNA strand exchange factor. When viewed in projection along the helical axis of the crystals, six protomers of the T7 helicase domain resemble the hexameric rings seen in electron microscopic images of the intact T7 helicase-primase. Nucleotides bind at the interface between pairs of adjacent subunits where an arginine is near the gamma-phosphate of the nucleotide in trans. The bound nucleotide stabilizes the folded conformation of a DNA-binding motif located near the center of the ring. These and other observations suggest how conformational changes are coupled to DNA unwinding activity.


{{STRUCTURE_1cr4|  PDB=1cr4  |  SCENE=  }}
Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7.,Sawaya MR, Guo S, Tabor S, Richardson CC, Ellenberger T Cell. 1999 Oct 15;99(2):167-77. PMID:10535735<ref>PMID:10535735</ref>


===CRYSTAL STRUCTURE OF THE HELICASE DOMAIN OF THE GENE 4 PROTEIN OF BACTERIOPHAGE T7: COMPLEX WITH DTDP===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_10535735}}
 
==About this Structure==
[[1cr4]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t7 Enterobacteria phage t7]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CR4 OCA].


==See Also==
==See Also==
*[[RNA polymerase|RNA polymerase]]
*[[RNA polymerase|RNA polymerase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:010535735</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Enterobacteria phage t7]]
[[Category: Enterobacteria phage t7]]
[[Category: Ellenberger, T.]]
[[Category: Ellenberger, T.]]

Revision as of 12:18, 27 August 2014

CRYSTAL STRUCTURE OF THE HELICASE DOMAIN OF THE GENE 4 PROTEIN OF BACTERIOPHAGE T7: COMPLEX WITH DTDPCRYSTAL STRUCTURE OF THE HELICASE DOMAIN OF THE GENE 4 PROTEIN OF BACTERIOPHAGE T7: COMPLEX WITH DTDP

Structural highlights

1cr4 is a 1 chain structure with sequence from Enterobacteria phage t7. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Related:1cr0, 1cr1, 1cr2
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Helicases that unwind DNA at the replication fork are ring-shaped oligomeric enzymes that move along one strand of a DNA duplex and catalyze the displacement of the complementary strand in a reaction that is coupled to nucleotide hydrolysis. The helicase domain of the replicative helicase-primase protein from bacteriophage T7 crystallized as a helical filament that resembles the Escherichia coli RecA protein, an ATP-dependent DNA strand exchange factor. When viewed in projection along the helical axis of the crystals, six protomers of the T7 helicase domain resemble the hexameric rings seen in electron microscopic images of the intact T7 helicase-primase. Nucleotides bind at the interface between pairs of adjacent subunits where an arginine is near the gamma-phosphate of the nucleotide in trans. The bound nucleotide stabilizes the folded conformation of a DNA-binding motif located near the center of the ring. These and other observations suggest how conformational changes are coupled to DNA unwinding activity.

Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7.,Sawaya MR, Guo S, Tabor S, Richardson CC, Ellenberger T Cell. 1999 Oct 15;99(2):167-77. PMID:10535735[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sawaya MR, Guo S, Tabor S, Richardson CC, Ellenberger T. Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell. 1999 Oct 15;99(2):167-77. PMID:10535735

1cr4, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA