1d1x: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 1,4-PBITU (H4B BOUND)== | ||
<StructureSection load='1d1x' size='340' side='right' caption='[[1d1x]], [[Resolution|resolution]] 2.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1d1x]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1D1X OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1D1X FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=4BT:2-{2-[4-(2-CARBAMIMIDOYLSULFANYL-ETHYL)-PHENYL]-ETHYL}-ISOTHIOUREA'>4BT</scene>, <scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CAD:CACODYLIC+ACID'>CAD</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=H4B:5,6,7,8-TETRAHYDROBIOPTERIN'>H4B</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1nse|1nse]], [[1d0c|1d0c]], [[1d0o|1d0o]], [[1d1v|1d1v]], [[1d1w|1d1w]], [[1d1y|1d1y]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Nitric-oxide_synthase_(NADPH_dependent) Nitric-oxide synthase (NADPH dependent)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.13.39 1.14.13.39] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1d1x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1d1x OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1d1x RCSB], [http://www.ebi.ac.uk/pdbsum/1d1x PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/d1/1d1x_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Nitric oxide produced by nitric-oxide synthase (NOS) is not only involved in a wide range of physiological functions but also in a variety of pathological conditions. Isoform-selective NOS inhibitors are highly desirable to regulate the NO production of one isoform beneficial to normal physiological functions from the uncontrolled NO production of another isoform that accompanies certain pathological states. Crystal structures of the heme domain of the three NOS isoforms have revealed a very high degree of similarity in the immediate vicinity of the heme active site illustrating the challenge of isoform-selective inhibitor design. Isothioureas are potent NOS inhibitors, and the structures of the endothelial NOS heme domain complexed with isothioureas bearing small S-alkyl substituents have been determined (Li, H., Raman, C.S., Martasek, P., Kral, V., Masters, B.S.S., and Poulos, T.L. (2000) J. Inorg. Biochem. 81, 133--139). In the present communication, the binding mode of larger bisisothioureas complexed to the endothelial NOS heme domain has been determined. These structures afford a structural rationale for the known inhibitory activities. In addition, these structures provide clues on how to exploit the longer inhibitor substituents that extend out of the active site pocket for isoform-selective inhibitor design. | |||
Implications for isoform-selective inhibitor design derived from the binding mode of bulky isothioureas to the heme domain of endothelial nitric-oxide synthase.,Raman CS, Li H, Martasek P, Babu BR, Griffith OW, Masters BS, Poulos TL J Biol Chem. 2001 Jul 13;276(28):26486-91. Epub 2001 Apr 30. PMID:11331290<ref>PMID:11331290</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Nitric Oxide Synthase|Nitric Oxide Synthase]] | *[[Nitric Oxide Synthase|Nitric Oxide Synthase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Bos taurus]] | [[Category: Bos taurus]] | ||
[[Category: Li, H.]] | [[Category: Li, H.]] | ||
[[Category: Martasek, P.]] | [[Category: Martasek, P.]] |
Revision as of 12:17, 27 August 2014
BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 1,4-PBITU (H4B BOUND)BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 1,4-PBITU (H4B BOUND)
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedNitric oxide produced by nitric-oxide synthase (NOS) is not only involved in a wide range of physiological functions but also in a variety of pathological conditions. Isoform-selective NOS inhibitors are highly desirable to regulate the NO production of one isoform beneficial to normal physiological functions from the uncontrolled NO production of another isoform that accompanies certain pathological states. Crystal structures of the heme domain of the three NOS isoforms have revealed a very high degree of similarity in the immediate vicinity of the heme active site illustrating the challenge of isoform-selective inhibitor design. Isothioureas are potent NOS inhibitors, and the structures of the endothelial NOS heme domain complexed with isothioureas bearing small S-alkyl substituents have been determined (Li, H., Raman, C.S., Martasek, P., Kral, V., Masters, B.S.S., and Poulos, T.L. (2000) J. Inorg. Biochem. 81, 133--139). In the present communication, the binding mode of larger bisisothioureas complexed to the endothelial NOS heme domain has been determined. These structures afford a structural rationale for the known inhibitory activities. In addition, these structures provide clues on how to exploit the longer inhibitor substituents that extend out of the active site pocket for isoform-selective inhibitor design. Implications for isoform-selective inhibitor design derived from the binding mode of bulky isothioureas to the heme domain of endothelial nitric-oxide synthase.,Raman CS, Li H, Martasek P, Babu BR, Griffith OW, Masters BS, Poulos TL J Biol Chem. 2001 Jul 13;276(28):26486-91. Epub 2001 Apr 30. PMID:11331290[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|