1b2y: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==STRUCTURE OF HUMAN PANCREATIC ALPHA-AMYLASE IN COMPLEX WITH THE CARBOHYDRATE INHIBITOR ACARBOSE== | ||
<StructureSection load='1b2y' size='340' side='right' caption='[[1b2y]], [[Resolution|resolution]] 3.20Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1b2y]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1B2Y OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1B2Y FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=G6D:6-DEOXY-ALPHA-D-GLUCOSE'>G6D</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=AC1:6-METHYL-5-(4,5,6-TRIHYDROXY-3-HYDROXYMETHYL-CYCLOHEX-2-ENYLAMINO)-TETRAHYDRO-PYRAN-2,3,4-TRIOL'>AC1</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Alpha-amylase Alpha-amylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.1 3.2.1.1] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1b2y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1b2y OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1b2y RCSB], [http://www.ebi.ac.uk/pdbsum/1b2y PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/b2/1b2y_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Crystal structures of human pancreatic alpha-amylase (HPA) in complex with naturally occurring inhibitors have been solved. The tetrasaccharide acarbose and a pseudo-pentasaccharide of the trestatin family produced identical continuous electron densities corresponding to a pentasaccharide species, spanning the -3 to +2 subsites of the enzyme, presumably resulting from transglycosylation. Binding of the acarviosine core linked to a glucose residue at subsites -1 to +2 appears to be a critical part of the interaction process between alpha-amylases and trestatin-derived inhibitors. Two crystal forms, obtained at different values of pH, for the complex of HPA with the protein inhibitor from Phaseolus vulgaris (alpha-amylase inhibitor) have been solved. The flexible loop typical of the mammalian alpha-amylases was shown to exist in two different conformations, suggesting that loop closure is pH-sensitive. Structural information is provided for the important inhibitor residue, Arg-74, which has not been observed previously in structural analyses. | |||
Crystal structures of human pancreatic alpha-amylase in complex with carbohydrate and proteinaceous inhibitors.,Nahoum V, Roux G, Anton V, Rouge P, Puigserver A, Bischoff H, Henrissat B, Payan F Biochem J. 2000 Feb 15;346 Pt 1:201-8. PMID:10657258<ref>PMID:10657258</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[ | *[[Amylase|Amylase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Alpha-amylase]] | [[Category: Alpha-amylase]] | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] |
Revision as of 06:11, 7 August 2014
STRUCTURE OF HUMAN PANCREATIC ALPHA-AMYLASE IN COMPLEX WITH THE CARBOHYDRATE INHIBITOR ACARBOSESTRUCTURE OF HUMAN PANCREATIC ALPHA-AMYLASE IN COMPLEX WITH THE CARBOHYDRATE INHIBITOR ACARBOSE
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCrystal structures of human pancreatic alpha-amylase (HPA) in complex with naturally occurring inhibitors have been solved. The tetrasaccharide acarbose and a pseudo-pentasaccharide of the trestatin family produced identical continuous electron densities corresponding to a pentasaccharide species, spanning the -3 to +2 subsites of the enzyme, presumably resulting from transglycosylation. Binding of the acarviosine core linked to a glucose residue at subsites -1 to +2 appears to be a critical part of the interaction process between alpha-amylases and trestatin-derived inhibitors. Two crystal forms, obtained at different values of pH, for the complex of HPA with the protein inhibitor from Phaseolus vulgaris (alpha-amylase inhibitor) have been solved. The flexible loop typical of the mammalian alpha-amylases was shown to exist in two different conformations, suggesting that loop closure is pH-sensitive. Structural information is provided for the important inhibitor residue, Arg-74, which has not been observed previously in structural analyses. Crystal structures of human pancreatic alpha-amylase in complex with carbohydrate and proteinaceous inhibitors.,Nahoum V, Roux G, Anton V, Rouge P, Puigserver A, Bischoff H, Henrissat B, Payan F Biochem J. 2000 Feb 15;346 Pt 1:201-8. PMID:10657258[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|