1aex: Difference between revisions
m Protected "1aex" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==STAPHYLOCOCCAL NUCLEASE, METHANE THIOL DISULFIDE TO V23C VARIANT== | ||
<StructureSection load='1aex' size='340' side='right' caption='[[1aex]], [[Resolution|resolution]] 2.10Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1aex]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AEX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1AEX FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=THP:THYMIDINE-3,5-DIPHOSPHATE'>THP</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SCH:S-METHYL-THIO-CYSTEINE'>SCH</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Micrococcal_nuclease Micrococcal nuclease], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.31.1 3.1.31.1] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1aex FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1aex OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1aex RCSB], [http://www.ebi.ac.uk/pdbsum/1aex PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ae/1aex_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The structures of several variants of staphylococcal nuclease with long flexible unnatural amino acid side chains in the hydrophobic core have been determined by X-ray crystallography. The unnatural amino acids are disulfide moieties between the lone cysteine residue in V23C nuclease and methane, ethane, 1-n-propane, 1-n-butane, 1-n-pentane, and 2-hydroxyethyl thiols. We have examined changes in the core packing of these mutants. Side chains as large as the 1-n-propyl cysteine disulfide can be incorporated without perturbation of the structure. This is due, in part, to cavities present in the wild-type protein. The longest side chains are not well defined, even though they remain buried within the protein interior. These results suggest that the enthalpy-entropy balance that governs the rigidity of protein interiors favors tight packing only weakly. Additionally, the tight packing observed normally in protein interiors may reflect, in part, the limited numbers of rotamers available to the natural amino acids. | |||
Mobile unnatural amino acid side chains in the core of staphylococcal nuclease.,Wynn R, Harkins PC, Richards FM, Fox RO Protein Sci. 1996 Jun;5(6):1026-31. PMID:8762134<ref>PMID:8762134</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | |||
*[[Staphylococcal nuclease|Staphylococcal nuclease]] | |||
== | == References == | ||
[[ | <references/> | ||
__TOC__ | |||
== | </StructureSection> | ||
< | |||
[[Category: Micrococcal nuclease]] | [[Category: Micrococcal nuclease]] | ||
[[Category: Staphylococcus aureus]] | [[Category: Staphylococcus aureus]] |
Revision as of 11:06, 30 July 2014
STAPHYLOCOCCAL NUCLEASE, METHANE THIOL DISULFIDE TO V23C VARIANTSTAPHYLOCOCCAL NUCLEASE, METHANE THIOL DISULFIDE TO V23C VARIANT
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe structures of several variants of staphylococcal nuclease with long flexible unnatural amino acid side chains in the hydrophobic core have been determined by X-ray crystallography. The unnatural amino acids are disulfide moieties between the lone cysteine residue in V23C nuclease and methane, ethane, 1-n-propane, 1-n-butane, 1-n-pentane, and 2-hydroxyethyl thiols. We have examined changes in the core packing of these mutants. Side chains as large as the 1-n-propyl cysteine disulfide can be incorporated without perturbation of the structure. This is due, in part, to cavities present in the wild-type protein. The longest side chains are not well defined, even though they remain buried within the protein interior. These results suggest that the enthalpy-entropy balance that governs the rigidity of protein interiors favors tight packing only weakly. Additionally, the tight packing observed normally in protein interiors may reflect, in part, the limited numbers of rotamers available to the natural amino acids. Mobile unnatural amino acid side chains in the core of staphylococcal nuclease.,Wynn R, Harkins PC, Richards FM, Fox RO Protein Sci. 1996 Jun;5(6):1026-31. PMID:8762134[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|