4du3: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:4du3.png|left|200px]]
==RB69 DNA Polymerase Ternary Complex with dDTP Opposite dT with 3-Deaza-adenine at the N-1 Position of Template Strand==
<StructureSection load='4du3' size='340' side='right' caption='[[4du3]], [[Resolution|resolution]] 2.02&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[4du3]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_rb69 Enterobacteria phage rb69]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4DU3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4DU3 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=DTP:2-DEOXYADENOSINE+5-TRIPHOSPHATE'>DTP</scene><br>
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=2DT:3-DEOXYTHYMIDINE-5-MONOPHOSPHATE'>2DT</scene>, <scene name='pdbligand=4DU:1-(2-DEOXY-5-O-PHOSPHONO-BETA-D-ERYTHRO-PENTOFURANOSYL)-1H-IMIDAZO[4,5-C]PYRIDIN-4-AMINE'>4DU</scene></td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4dtj|4dtj]], [[4dtm|4dtm]], [[4dtn|4dtn]], [[4dto|4dto]], [[4dtp|4dtp]], [[4dtr|4dtr]], [[4dts|4dts]], [[4dtu|4dtu]], [[4du1|4du1]], [[4du4|4du4]], [[4dtx|4dtx]]</td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">43 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=12353 Enterobacteria phage RB69])</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_DNA_polymerase DNA-directed DNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.7 2.7.7.7] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4du3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4du3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4du3 RCSB], [http://www.ebi.ac.uk/pdbsum/4du3 PDBsum]</span></td></tr>
<table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Minor groove hydrogen bonding (HB) interactions between DNA polymerases (pols) and N3 of purines or O2 of pyrimidines have been proposed to be essential for DNA synthesis from results obtained using various nucleoside analogues lacking the N3 or O2 contacts that interfered with primer extension. Because there has been no direct structural evidence to support this proposal, we decided to evaluate the contribution of minor groove HB interactions with family B pols. We have used RB69 DNA pol and 3-deaza-2'-deoxyadenosine (3DA), an analogue of 2-deoxyadenosine, which has the same HB pattern opposite T but with N3 replaced with a carbon atom. We then determined pre-steady-state kinetic parameters for the insertion of dAMP opposite dT using primer/templates (P/T)-containing 3DA. We also determined three structures of ternary complexes with 3DA at various positions in the duplex DNA substrate. We found that the incorporation efficiency of dAMP opposite dT decreased 10(2)-10(3)-fold even when only one minor groove HB interaction was missing. Our structures show that the HB pattern and base pair geometry of 3DA/dT is exactly the same as those of dA/dT, which makes 3DA an optimal analogue for probing minor groove HB interactions between a DNA polymerase and a nucleobase. In addition, our structures provide a rationale for the observed 10(2)-10(3)-fold decrease in the rate of nucleotide incorporation. The minor groove HB interactions between position n - 2 of the primer strand and RB69pol fix the rotomer conformations of the K706 and D621 side chains, as well as the position of metal ion A and its coordinating ligands, so that they are in the optinal orientation for DNA synthesis.


{{STRUCTURE_4du3|  PDB=4du3  |  SCENE=  }}
Probing Minor Groove Hydrogen Bonding Interactions between RB69 DNA Polymerase and DNA.,Xia S, Christian TD, Wang J, Konigsberg WH Biochemistry. 2012 May 17. PMID:22571765<ref>PMID:22571765</ref>


===RB69 DNA Polymerase Ternary Complex with dDTP Opposite dT with 3-Deaza-adenine at the N-1 Position of Template Strand===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


{{ABSTRACT_PUBMED_22571765}}
==See Also==
 
*[[DNA polymerase|DNA polymerase]]
==About this Structure==
== References ==
[[4du3]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_rb69 Enterobacteria phage rb69]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4DU3 OCA].
<references/>
 
__TOC__
==Reference==
</StructureSection>
<ref group="xtra">PMID:022571765</ref><references group="xtra"/>
[[Category: DNA-directed DNA polymerase]]
[[Category: DNA-directed DNA polymerase]]
[[Category: Enterobacteria phage rb69]]
[[Category: Enterobacteria phage rb69]]

Revision as of 12:16, 11 June 2014

RB69 DNA Polymerase Ternary Complex with dDTP Opposite dT with 3-Deaza-adenine at the N-1 Position of Template StrandRB69 DNA Polymerase Ternary Complex with dDTP Opposite dT with 3-Deaza-adenine at the N-1 Position of Template Strand

Structural highlights

4du3 is a 3 chain structure with sequence from Enterobacteria phage rb69. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
NonStd Res:,
Related:4dtj, 4dtm, 4dtn, 4dto, 4dtp, 4dtr, 4dts, 4dtu, 4du1, 4du4, 4dtx
Gene:43 (Enterobacteria phage RB69)
Activity:DNA-directed DNA polymerase, with EC number 2.7.7.7
Resources:FirstGlance, OCA, RCSB, PDBsum

Publication Abstract from PubMed

Minor groove hydrogen bonding (HB) interactions between DNA polymerases (pols) and N3 of purines or O2 of pyrimidines have been proposed to be essential for DNA synthesis from results obtained using various nucleoside analogues lacking the N3 or O2 contacts that interfered with primer extension. Because there has been no direct structural evidence to support this proposal, we decided to evaluate the contribution of minor groove HB interactions with family B pols. We have used RB69 DNA pol and 3-deaza-2'-deoxyadenosine (3DA), an analogue of 2-deoxyadenosine, which has the same HB pattern opposite T but with N3 replaced with a carbon atom. We then determined pre-steady-state kinetic parameters for the insertion of dAMP opposite dT using primer/templates (P/T)-containing 3DA. We also determined three structures of ternary complexes with 3DA at various positions in the duplex DNA substrate. We found that the incorporation efficiency of dAMP opposite dT decreased 10(2)-10(3)-fold even when only one minor groove HB interaction was missing. Our structures show that the HB pattern and base pair geometry of 3DA/dT is exactly the same as those of dA/dT, which makes 3DA an optimal analogue for probing minor groove HB interactions between a DNA polymerase and a nucleobase. In addition, our structures provide a rationale for the observed 10(2)-10(3)-fold decrease in the rate of nucleotide incorporation. The minor groove HB interactions between position n - 2 of the primer strand and RB69pol fix the rotomer conformations of the K706 and D621 side chains, as well as the position of metal ion A and its coordinating ligands, so that they are in the optinal orientation for DNA synthesis.

Probing Minor Groove Hydrogen Bonding Interactions between RB69 DNA Polymerase and DNA.,Xia S, Christian TD, Wang J, Konigsberg WH Biochemistry. 2012 May 17. PMID:22571765[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Xia S, Christian TD, Wang J, Konigsberg WH. Probing Minor Groove Hydrogen Bonding Interactions between RB69 DNA Polymerase and DNA. Biochemistry. 2012 May 17. PMID:22571765 doi:10.1021/bi300416z

4du3, resolution 2.02Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA