3wlb: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
''' | ==HLA-A24 in complex with HIV-1 Nef126-10(8T10F)== | ||
<StructureSection load='3wlb' size='340' side='right' caption='[[3wlb]], [[Resolution|resolution]] 2.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3wlb]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WLB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3WLB FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3wl9|3wl9]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3wlb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wlb OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3wlb RCSB], [http://www.ebi.ac.uk/pdbsum/3wlb PDBsum]</span></td></tr> | |||
<table> | |||
== Disease == | |||
[[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:[http://omim.org/entry/241600 241600]]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.<ref>PMID:16549777</ref> Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.<ref>PMID:3532124</ref> <ref>PMID:1336137</ref> <ref>PMID:7554280</ref> <ref>PMID:4586824</ref> <ref>PMID:8084451</ref> <ref>PMID:12119416</ref> <ref>PMID:12796775</ref> <ref>PMID:16901902</ref> <ref>PMID:16491088</ref> <ref>PMID:17646174</ref> <ref>PMID:18835253</ref> <ref>PMID:18395224</ref> <ref>PMID:19284997</ref> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/1A24_HUMAN 1A24_HUMAN]] Involved in the presentation of foreign antigens to the immune system. [[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
BACKGROUND: Human Leukocyte Antigen (HLA) class I restricted Cytotoxic T Lymphocytes (CTLs) exert substantial evolutionary pressure on HIV-1, as evidenced by the reproducible selection of HLA-restricted immune escape mutations in the viral genome. An escape mutation from tyrosine to phenylalanine at the 135th amino acid (Y135F) of the HIV-1 nef gene is frequently observed in patients with HLA-A*24:02, an HLA Class I allele expressed in ~70% of Japanese persons. The selection of CTL escape mutations could theoretically result in the de novo creation of novel epitopes, however, the extent to which such dynamic "CTL epitope switching" occurs in HIV-1 remains incompletely known. RESULTS: Two overlapping epitopes in HIV-1 nef, Nef126-10 and Nef134-10, elicit the most frequent CTL responses restricted by HLA-A*24:02. Thirty-five of 46 (76%) HLA-A*24:02-positive patients harbored the Y135F mutation in their plasma HIV-1 RNA. Nef codon 135 plays a crucial role in both epitopes, as it represents the C-terminal anchor for Nef126-10 and the N-terminal anchor for Nef134-10. While the majority of patients with 135F exhibited CTL responses to Nef126-10, none harboring the "wild-type" (global HIV-1 subtype B consensus) Y135 did so, suggesting that Nef126-10 is not efficiently presented in persons harboring Y135. Consistent with this, peptide binding and limiting dilution experiments confirmed F, but not Y, as a suitable C-terminal anchor for HLA-A*24:02. Moreover, experiments utilizing antigen specific CTL clones to recognize endogenously-expressed peptides with or without Y135F indicated that this mutation disrupted the antigen expression of Nef134-10. Critically, the selection of Y135F also launched the expression of Nef126-10, indicating that the latter epitope is created as a result of escape within the former. CONCLUSIONS: Our data represent the first example of the de novo creation of a novel overlapping CTL epitope as a direct result of HLA-driven immune escape in a neighboring epitope. The robust targeting of Nef126-10 following transmission (or in vivo selection) of HIV-1 containing Y135F may explain in part the previously reported stable plasma viral loads over time in the Japanese population, despite the high prevalence of both HLA-A*24:02 and Nef-Y135F in circulating HIV-1 sequences. | |||
Switching and emergence of CTL epitopes in HIV-1 infection.,Han C, Kawana-Tachikawa A, Shimizu A, Zhu D, Nakamura H, Adachi E, Kikuchi T, Koga M, Koibuchi T, Gao GF, Sato Y, Yamagata A, Martin E, Fukai S, Brumme ZL, Iwamoto A Retrovirology. 2014 May 21;11(1):38. doi: 10.1186/1742-4690-11-38. PMID:24886641<ref>PMID:24886641</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Fukai, S.]] | |||
[[Category: Han, C.]] | |||
[[Category: Iwamoto, A.]] | |||
[[Category: Shimizu, A.]] | |||
[[Category: Yamagata, A.]] | |||
[[Category: Hiv-1]] | |||
[[Category: Hla-a24]] | |||
[[Category: Immune response]] | |||
[[Category: Immune system]] | |||
[[Category: Immunogloburin domain]] | |||
[[Category: Mhc class i]] | |||
[[Category: Nef]] | |||
[[Category: T cell receptor]] | |||
[[Category: Tcr]] |