3rh0: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:3rh0.png|left|200px]]
==Corynebacterium glutamicum mycothiol/mycoredoxin1-dependent arsenate reductase Cg_ArsC2==
<StructureSection load='3rh0' size='340' side='right' caption='[[3rh0]], [[Resolution|resolution]] 1.72&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3rh0]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Corynebacterium_glutamicum Corynebacterium glutamicum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RH0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3RH0 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=OCS:CYSTEINESULFONIC+ACID'>OCS</scene></td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3t38|3t38]]</td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">arsX, Cgl0263, cg0319 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1718 Corynebacterium glutamicum])</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Arsenate_reductase_(glutaredoxin) Arsenate reductase (glutaredoxin)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.20.4.1 1.20.4.1] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3rh0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3rh0 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3rh0 RCSB], [http://www.ebi.ac.uk/pdbsum/3rh0 PDBsum]</span></td></tr>
<table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Arsenate reductases (ArsCs) evolved independently as a defence mechanism against toxic arsenate. In the genome of Corynebacterium glutamicum, there are two arsenic resistance operons (ars1 and ars2) and four potential genes coding for arsenate reductases (Cg_ArsC1, Cg_ArsC2, Cg_ArsC1' and Cg_ArsC4). Using knockout mutants, in vitro reconstitution of redox pathways, arsenic measurements and enzyme kinetics, we show that a single organism has two different classes of arsenate reductases. Cg_ArsC1 and Cg_ArsC2 are single-cysteine monomeric enzymes coupled to the mycothiol/mycoredoxin redox pathway using a mycothiol transferase mechanism. In contrast, Cg_ArsC1' is a three-cysteine containing homodimer that uses a reduction mechanism linked to the thioredoxin pathway with a k(cat) /K(M) value which is 10(3) times higher than the one of Cg_ArsC1 or Cg_ArsC2. Cg_ArsC1' is constitutively expressed at low levels using its own promoter site. It reduces arsenate to arsenite that can then induce the expression of Cg_ArsC1 and Cg_ArsC2. We also solved the X-ray structures of Cg_ArsC1' and Cg_ArsC2. Both enzymes have a typical low-molecular-weight protein tyrosine phosphatases-I fold with a conserved oxyanion binding site. Moreover, Cg_ArsC1' is unique in bearing an N-terminal three-helical bundle that interacts with the active site of the other chain in the dimeric interface.


<!--
Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms.,Villadangos AF, Van Belle K, Wahni K, Tamu Dufe V, Freitas S, Nur H, De Galan S, Gil JA, Collet JF, Mateos LM, Messens J Mol Microbiol. 2011 Nov;82(4):998-1014. doi:, 10.1111/j.1365-2958.2011.07882.x. Epub 2011 Oct 27. PMID:22032722<ref>PMID:22032722</ref>
The line below this paragraph, containing "STRUCTURE_3rh0", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_3rh0|  PDB=3rh0  |  SCENE=  }}


===Corynebacterium glutamicum mycothiol/mycoredoxin1-dependent arsenate reductase Cg_ArsC2===
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
</div>


 
==See Also==
<!--
*[[Arsenate reductase|Arsenate reductase]]
The line below this paragraph, {{ABSTRACT_PUBMED_22032722}}, adds the Publication Abstract to the page
== References ==
(as it appears on PubMed at http://www.pubmed.gov), where 22032722 is the PubMed ID number.
<references/>
-->
__TOC__
{{ABSTRACT_PUBMED_22032722}}
</StructureSection>
 
==About this Structure==
[[3rh0]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Corynebacterium_glutamicum Corynebacterium glutamicum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RH0 OCA].
 
==Reference==
<ref group="xtra">PMID:022032722</ref><references group="xtra"/>
[[Category: Corynebacterium glutamicum]]
[[Category: Corynebacterium glutamicum]]
[[Category: Dufe, T V.]]
[[Category: Dufe, T V.]]

Revision as of 07:38, 5 June 2014

Corynebacterium glutamicum mycothiol/mycoredoxin1-dependent arsenate reductase Cg_ArsC2Corynebacterium glutamicum mycothiol/mycoredoxin1-dependent arsenate reductase Cg_ArsC2

Structural highlights

3rh0 is a 2 chain structure with sequence from Corynebacterium glutamicum. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
NonStd Res:
Related:3t38
Gene:arsX, Cgl0263, cg0319 (Corynebacterium glutamicum)
Activity:Arsenate reductase (glutaredoxin), with EC number 1.20.4.1
Resources:FirstGlance, OCA, RCSB, PDBsum

Publication Abstract from PubMed

Arsenate reductases (ArsCs) evolved independently as a defence mechanism against toxic arsenate. In the genome of Corynebacterium glutamicum, there are two arsenic resistance operons (ars1 and ars2) and four potential genes coding for arsenate reductases (Cg_ArsC1, Cg_ArsC2, Cg_ArsC1' and Cg_ArsC4). Using knockout mutants, in vitro reconstitution of redox pathways, arsenic measurements and enzyme kinetics, we show that a single organism has two different classes of arsenate reductases. Cg_ArsC1 and Cg_ArsC2 are single-cysteine monomeric enzymes coupled to the mycothiol/mycoredoxin redox pathway using a mycothiol transferase mechanism. In contrast, Cg_ArsC1' is a three-cysteine containing homodimer that uses a reduction mechanism linked to the thioredoxin pathway with a k(cat) /K(M) value which is 10(3) times higher than the one of Cg_ArsC1 or Cg_ArsC2. Cg_ArsC1' is constitutively expressed at low levels using its own promoter site. It reduces arsenate to arsenite that can then induce the expression of Cg_ArsC1 and Cg_ArsC2. We also solved the X-ray structures of Cg_ArsC1' and Cg_ArsC2. Both enzymes have a typical low-molecular-weight protein tyrosine phosphatases-I fold with a conserved oxyanion binding site. Moreover, Cg_ArsC1' is unique in bearing an N-terminal three-helical bundle that interacts with the active site of the other chain in the dimeric interface.

Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms.,Villadangos AF, Van Belle K, Wahni K, Tamu Dufe V, Freitas S, Nur H, De Galan S, Gil JA, Collet JF, Mateos LM, Messens J Mol Microbiol. 2011 Nov;82(4):998-1014. doi:, 10.1111/j.1365-2958.2011.07882.x. Epub 2011 Oct 27. PMID:22032722[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Villadangos AF, Van Belle K, Wahni K, Tamu Dufe V, Freitas S, Nur H, De Galan S, Gil JA, Collet JF, Mateos LM, Messens J. Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms. Mol Microbiol. 2011 Nov;82(4):998-1014. doi:, 10.1111/j.1365-2958.2011.07882.x. Epub 2011 Oct 27. PMID:22032722 doi:10.1111/j.1365-2958.2011.07882.x

3rh0, resolution 1.72Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA