3o2p: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "3o2p" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:3o2p.png|left|200px]]
==A Dual E3 Mechanism for Rub1 Ligation to Cdc53: Dcn1(P)-Cdc53(WHB)==
<StructureSection load='3o2p' size='340' side='right' caption='[[3o2p]], [[Resolution|resolution]] 2.23&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3o2p]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3O2P OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3O2P FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3o2u|3o2u]], [[3o6b|3o6b]]</td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">DCN1, YLR128W, L3111 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 Saccharomyces cerevisiae]), CDC53, YDL132W, D2190 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 Saccharomyces cerevisiae])</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3o2p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3o2p OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3o2p RCSB], [http://www.ebi.ac.uk/pdbsum/3o2p PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/o2/3o2p_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
In ubiquitin-like protein (UBL) cascades, a thioester-linked E2 approximately UBL complex typically interacts with an E3 enzyme for UBL transfer to the target. Here we demonstrate a variant mechanism, whereby the E2 Ubc12 functions with two E3s, Hrt1 and Dcn1, for ligation of the UBL Rub1 to Cdc53's WHB subdomain. Hrt1 functions like a conventional RING E3, with its N terminus recruiting Cdc53 and C-terminal RING activating Ubc12 approximately Rub1. Dcn1's "potentiating neddylation" domain (Dcn1(P)) acts as an additional E3, reducing nonspecific Hrt1-mediated Ubc12 approximately Rub1 discharge and directing Ubc12's active site to Cdc53. Crystal structures of Dcn1(P)-Cdc53(WHB) and Ubc12 allow modeling of a catalytic complex, supported by mutational data. We propose that Dcn1's interactions with both Cdc53 and Ubc12 would restrict the otherwise flexible Hrt1 RING-bound Ubc12 approximately Rub1 to a catalytically competent orientation. Our data reveal mechanisms by which two E3s function synergistically to promote UBL transfer from one E2 to a target.


<!--
A dual E3 mechanism for Rub1 ligation to Cdc53.,Scott DC, Monda JK, Grace CR, Duda DM, Kriwacki RW, Kurz T, Schulman BA Mol Cell. 2010 Sep 10;39(5):784-96. PMID:20832729<ref>PMID:20832729</ref>
The line below this paragraph, containing "STRUCTURE_3o2p", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_3o2p|  PDB=3o2p  |  SCENE=  }}


===A Dual E3 Mechanism for Rub1 Ligation to Cdc53: Dcn1(P)-Cdc53(WHB)===
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
 
</div>
 
== References ==
<!--
<references/>
The line below this paragraph, {{ABSTRACT_PUBMED_20832729}}, adds the Publication Abstract to the page
__TOC__
(as it appears on PubMed at http://www.pubmed.gov), where 20832729 is the PubMed ID number.
</StructureSection>
-->
{{ABSTRACT_PUBMED_20832729}}
 
==About this Structure==
[[3o2p]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3O2P OCA].
 
==Reference==
<ref group="xtra">PMID:020832729</ref><references group="xtra"/>
[[Category: Saccharomyces cerevisiae]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Duda, D M.]]
[[Category: Duda, D M.]]

Revision as of 13:33, 28 May 2014

A Dual E3 Mechanism for Rub1 Ligation to Cdc53: Dcn1(P)-Cdc53(WHB)A Dual E3 Mechanism for Rub1 Ligation to Cdc53: Dcn1(P)-Cdc53(WHB)

Structural highlights

3o2p is a 2 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Related:3o2u, 3o6b
Gene:DCN1, YLR128W, L3111 (Saccharomyces cerevisiae), CDC53, YDL132W, D2190 (Saccharomyces cerevisiae)
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

In ubiquitin-like protein (UBL) cascades, a thioester-linked E2 approximately UBL complex typically interacts with an E3 enzyme for UBL transfer to the target. Here we demonstrate a variant mechanism, whereby the E2 Ubc12 functions with two E3s, Hrt1 and Dcn1, for ligation of the UBL Rub1 to Cdc53's WHB subdomain. Hrt1 functions like a conventional RING E3, with its N terminus recruiting Cdc53 and C-terminal RING activating Ubc12 approximately Rub1. Dcn1's "potentiating neddylation" domain (Dcn1(P)) acts as an additional E3, reducing nonspecific Hrt1-mediated Ubc12 approximately Rub1 discharge and directing Ubc12's active site to Cdc53. Crystal structures of Dcn1(P)-Cdc53(WHB) and Ubc12 allow modeling of a catalytic complex, supported by mutational data. We propose that Dcn1's interactions with both Cdc53 and Ubc12 would restrict the otherwise flexible Hrt1 RING-bound Ubc12 approximately Rub1 to a catalytically competent orientation. Our data reveal mechanisms by which two E3s function synergistically to promote UBL transfer from one E2 to a target.

A dual E3 mechanism for Rub1 ligation to Cdc53.,Scott DC, Monda JK, Grace CR, Duda DM, Kriwacki RW, Kurz T, Schulman BA Mol Cell. 2010 Sep 10;39(5):784-96. PMID:20832729[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Scott DC, Monda JK, Grace CR, Duda DM, Kriwacki RW, Kurz T, Schulman BA. A dual E3 mechanism for Rub1 ligation to Cdc53. Mol Cell. 2010 Sep 10;39(5):784-96. PMID:20832729 doi:10.1016/j.molcel.2010.08.030

3o2p, resolution 2.23Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA