4mtc: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
''' | ==Crystal structure of human C53A DJ-1== | ||
<StructureSection load='4mtc' size='340' side='right' caption='[[4mtc]], [[Resolution|resolution]] 1.47Å' scene=''> | |||
== Structural highlights == | |||
[[4mtc]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4MTC OCA]. <br> | |||
<b>Related:</b> [[4mnt|4mnt]]<br> | |||
<b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span><br> | |||
== Disease == | |||
[[http://www.uniprot.org/uniprot/PARK7_HUMAN PARK7_HUMAN]] Defects in PARK7 are the cause of Parkinson disease type 7 (PARK7) [MIM:[http://omim.org/entry/606324 606324]]. A neurodegenerative disorder characterized by resting tremor, postural tremor, bradykinesia, muscular rigidity, anxiety and psychotic episodes. PARK7 has onset before 40 years, slow progression and initial good response to levodopa. Some patients may show traits reminiscent of amyotrophic lateral sclerosis-parkinsonism/dementia complex (Guam disease).<ref>PMID:12851414</ref> <ref>PMID:12446870</ref> <ref>PMID:14713311</ref> <ref>PMID:12953260</ref> <ref>PMID:15365989</ref> <ref>PMID:14607841</ref> <ref>PMID:15254937</ref> <ref>PMID:17846173</ref> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/PARK7_HUMAN PARK7_HUMAN]] Protects cells against oxidative stress and cell death. Plays a role in regulating expression or stability of the mitochondrial uncoupling proteins SLC25A14 and SLC25A27 in dopaminergic neurons of the substantia nigra pars compacta and attenuates the oxidative stress induced by calcium entry into the neurons via L-type channels during pacemaking. Eliminates hydrogen peroxide and protects cells against hydrogen peroxide-induced cell death. May act as an atypical peroxiredoxin-like peroxidase that scavenges hydrogen peroxide. Following removal of a C-terminal peptide, displays protease activity and enhanced cytoprotective action against oxidative stress-induced apoptosis. Stabilizes NFE2L2 by preventing its association with KEAP1 and its subsequent ubiquitination. Binds to OTUD7B and inhibits its deubiquitinating activity. Enhances RELA nuclear translocation. Binds to a number of mRNAs containing multiple copies of GG or CC motifs and partially inhibits their translation but dissociates following oxidative stress. Required for correct mitochondrial morphology and function and for autophagy of dysfunctional mitochondria. Regulates astrocyte inflammatory responses. Acts as a positive regulator of androgen receptor-dependent transcription. Prevents aggregation of SNCA. Plays a role in fertilization. Has no proteolytic activity. Has cell-growth promoting activity and transforming activity. May function as a redox-sensitive chaperone.<ref>PMID:9070310</ref> <ref>PMID:11477070</ref> <ref>PMID:12612053</ref> <ref>PMID:14749723</ref> <ref>PMID:15502874</ref> <ref>PMID:15976810</ref> <ref>PMID:16390825</ref> <ref>PMID:17015834</ref> <ref>PMID:18626009</ref> <ref>PMID:18711745</ref> <ref>PMID:20304780</ref> <ref>PMID:21097510</ref> <ref>PMID:12939276</ref> <ref>PMID:15181200</ref> | |||
== Publication Abstract from PubMed == | |||
Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis. | |||
DJ-1 Is a Copper Chaperone Acting on SOD1 Activation.,Girotto S, Cendron L, Bisaglia M, Tessari I, Mammi S, Zanotti G, Bubacco L J Biol Chem. 2014 Apr 11;289(15):10887-99. doi: 10.1074/jbc.M113.535112. Epub, 2014 Feb 24. PMID:24567322<ref>PMID:24567322</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Human]] | |||
[[Category: Bisaglia, M.]] | |||
[[Category: Bubacco, L.]] | |||
[[Category: Cendron, L.]] | |||
[[Category: Girotto, S.]] | |||
[[Category: Mammi, S.]] | |||
[[Category: Tessari, I.]] | |||
[[Category: Zanotti, G.]] | |||
[[Category: Alpha/beta protein]] | |||
[[Category: Chaperone]] | |||
[[Category: Cytosol]] | |||
[[Category: Homodimer]] | |||
[[Category: Hydrolase]] | |||
[[Category: Mitochondrion]] | |||
[[Category: Nucleus]] | |||
[[Category: Oxidative stress protection]] | |||
[[Category: Rossmann fold]] |
Revision as of 08:22, 30 April 2014
Crystal structure of human C53A DJ-1Crystal structure of human C53A DJ-1
Structural highlights4mtc is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. Related: 4mnt Disease[PARK7_HUMAN] Defects in PARK7 are the cause of Parkinson disease type 7 (PARK7) [MIM:606324]. A neurodegenerative disorder characterized by resting tremor, postural tremor, bradykinesia, muscular rigidity, anxiety and psychotic episodes. PARK7 has onset before 40 years, slow progression and initial good response to levodopa. Some patients may show traits reminiscent of amyotrophic lateral sclerosis-parkinsonism/dementia complex (Guam disease).[1] [2] [3] [4] [5] [6] [7] [8] Function[PARK7_HUMAN] Protects cells against oxidative stress and cell death. Plays a role in regulating expression or stability of the mitochondrial uncoupling proteins SLC25A14 and SLC25A27 in dopaminergic neurons of the substantia nigra pars compacta and attenuates the oxidative stress induced by calcium entry into the neurons via L-type channels during pacemaking. Eliminates hydrogen peroxide and protects cells against hydrogen peroxide-induced cell death. May act as an atypical peroxiredoxin-like peroxidase that scavenges hydrogen peroxide. Following removal of a C-terminal peptide, displays protease activity and enhanced cytoprotective action against oxidative stress-induced apoptosis. Stabilizes NFE2L2 by preventing its association with KEAP1 and its subsequent ubiquitination. Binds to OTUD7B and inhibits its deubiquitinating activity. Enhances RELA nuclear translocation. Binds to a number of mRNAs containing multiple copies of GG or CC motifs and partially inhibits their translation but dissociates following oxidative stress. Required for correct mitochondrial morphology and function and for autophagy of dysfunctional mitochondria. Regulates astrocyte inflammatory responses. Acts as a positive regulator of androgen receptor-dependent transcription. Prevents aggregation of SNCA. Plays a role in fertilization. Has no proteolytic activity. Has cell-growth promoting activity and transforming activity. May function as a redox-sensitive chaperone.[9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] Publication Abstract from PubMedLack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis. DJ-1 Is a Copper Chaperone Acting on SOD1 Activation.,Girotto S, Cendron L, Bisaglia M, Tessari I, Mammi S, Zanotti G, Bubacco L J Biol Chem. 2014 Apr 11;289(15):10887-99. doi: 10.1074/jbc.M113.535112. Epub, 2014 Feb 24. PMID:24567322[23] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|