User:Michael Roberts/BIOL115 Myo: Difference between revisions

No edit summary
No edit summary
Line 20: Line 20:
You see how the <scene name='User:Michael_Roberts/BIOL115_Myo/Hbonds/1'>hydrogen bonds</scene> (yellow) that maintain the main secondary structure of the protein are arranged in this next view.
You see how the <scene name='User:Michael_Roberts/BIOL115_Myo/Hbonds/1'>hydrogen bonds</scene> (yellow) that maintain the main secondary structure of the protein are arranged in this next view.
Some amino acids have specific effects on secondary structure. This next view shows the locations of the <scene name='User:Michael_Roberts/BIOL115_Myo/Secondary_structure/11'>PROLINE</scene> residues in myoglobin. You can see that they all fall at the end of a stretch of helix. This is bacause their large side chains do not fit within the straight run of α-helix.
Some amino acids have specific effects on secondary structure. This next view shows the locations of the <scene name='User:Michael_Roberts/BIOL115_Myo/Secondary_structure/11'>PROLINE</scene> residues in myoglobin. You can see that they all fall at the end of a stretch of helix. This is bacause their large side chains do not fit within the straight run of α-helix.


'''THE GLOBIN FOLD''': In this next view, the eight <scene name='User:Michael_Roberts/BIOL115_Myo/Secondary_structure/3'>individual alpha-helices </scene>are each coloured differently. This gives you an impression of the classic globion fold. The α-helices pack together tightly, and there is very little space in the centre of the protein.
'''THE GLOBIN FOLD''': In this next view, the eight <scene name='User:Michael_Roberts/BIOL115_Myo/Secondary_structure/3'>individual alpha-helices </scene>are each coloured differently. This gives you an impression of the classic globion fold. The α-helices pack together tightly, and there is very little space in the centre of the protein.