User:Michael Roberts/BIOL115 CaM: Difference between revisions

No edit summary
No edit summary
Line 3: Line 3:
'''Sequence and structure of EF hands'''
'''Sequence and structure of EF hands'''


The EF hand motif is present in a many proteins and it commonly bestows the ability to bind Ca2+ ions. It was first identified in parvalbumin, a muscle protein. Here we will have a look at the Ca2+-binding protein calmodulin, which possesses four EF hands. Calmodulin and its isoform, troponinC, are important intracellular Ca2+-binding proteins.
The EF hand motif is present in a many proteins and it commonly bestows the ability to bind Ca2+ ions. It was first identified in parvalbumin, a muscle protein. Here we will have a look at the Ca2+-binding protein [[calmodulin]], which possesses four EF hands. Calmodulin and its isoform, troponinC, are important intracellular Ca2+-binding proteins.
The structure on the right, obtained by X-ray crystallography, represents the Ca2+-binding protein calmodulin. It has a dumbell-shaped structure with two identical lobes connected by a central alpha-helix. Each lobe comprises three a helices joined by loops. A helix-loop-helix motif forms the basis of each EF hand.
The structure on the right, obtained by X-ray crystallography, represents the Ca2+-binding protein calmodulin. It has a dumbell-shaped structure with two identical lobes connected by a central alpha-helix. Each lobe comprises three a helices joined by loops. A helix-loop-helix motif forms the basis of each EF hand.