1dxx: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "1dxx" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:1dxx.png|left|200px]]
{{STRUCTURE_1dxx|  PDB=1dxx  |  SCENE=  }}  
{{STRUCTURE_1dxx|  PDB=1dxx  |  SCENE=  }}  
===N-TERMINAL ACTIN-BINDING DOMAIN OF HUMAN DYSTROPHIN===
{{ABSTRACT_PUBMED_10801490}}


===N-TERMINAL ACTIN-BINDING DOMAIN OF HUMAN DYSTROPHIN===
==Disease==
[[http://www.uniprot.org/uniprot/DMD_HUMAN DMD_HUMAN]] Defects in DMD are the cause of Duchenne muscular dystrophy (DMD) [MIM:[http://omim.org/entry/310200 310200]]. DMD is the most common form of muscular dystrophy; a sex-linked recessive disorder. It typically presents in boys aged 3 to 7 year as proximal muscle weakness causing waddling gait, toe-walking, lordosis, frequent falls, and difficulty in standing up and climbing up stairs. The pelvic girdle is affected first, then the shoulder girdle. Progression is steady and most patients are confined to a wheelchair by age of 10 or 12. Flexion contractures and scoliosis ultimately occur. About 50% of patients have a lower IQ than their genetic expectations would suggest. There is no treatment.<ref>PMID:8401582</ref><ref>PMID:7981690</ref><ref>PMID:8817332</ref><ref>PMID:9851445</ref>  Defects in DMD are the cause of Becker muscular dystrophy (BMD) [MIM:[http://omim.org/entry/300376 300376]]. BMD resembles DMD in hereditary and clinical features but is later in onset and more benign.<ref>PMID:10573008</ref>  Defects in DMD are a cause of cardiomyopathy dilated X-linked type 3B (CMD3B) [MIM:[http://omim.org/entry/302045 302045]]; also known as X-linked dilated cardiomyopathy (XLCM). Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:9170407</ref><ref>PMID:12354438</ref><ref>PMID:12359139</ref>


{{ABSTRACT_PUBMED_10801490}}
==Function==
[[http://www.uniprot.org/uniprot/DMD_HUMAN DMD_HUMAN]] Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission.<ref>PMID:16710609</ref>


==About this Structure==
==About this Structure==
Line 11: Line 13:


==Reference==
==Reference==
<ref group="xtra">PMID:010801490</ref><references group="xtra"/>
<ref group="xtra">PMID:010801490</ref><references group="xtra"/><references/>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Keep, N H.]]
[[Category: Keep, N H.]]

Revision as of 07:27, 25 March 2013

Template:STRUCTURE 1dxx

N-TERMINAL ACTIN-BINDING DOMAIN OF HUMAN DYSTROPHINN-TERMINAL ACTIN-BINDING DOMAIN OF HUMAN DYSTROPHIN

Template:ABSTRACT PUBMED 10801490

DiseaseDisease

[DMD_HUMAN] Defects in DMD are the cause of Duchenne muscular dystrophy (DMD) [MIM:310200]. DMD is the most common form of muscular dystrophy; a sex-linked recessive disorder. It typically presents in boys aged 3 to 7 year as proximal muscle weakness causing waddling gait, toe-walking, lordosis, frequent falls, and difficulty in standing up and climbing up stairs. The pelvic girdle is affected first, then the shoulder girdle. Progression is steady and most patients are confined to a wheelchair by age of 10 or 12. Flexion contractures and scoliosis ultimately occur. About 50% of patients have a lower IQ than their genetic expectations would suggest. There is no treatment.[1][2][3][4] Defects in DMD are the cause of Becker muscular dystrophy (BMD) [MIM:300376]. BMD resembles DMD in hereditary and clinical features but is later in onset and more benign.[5] Defects in DMD are a cause of cardiomyopathy dilated X-linked type 3B (CMD3B) [MIM:302045]; also known as X-linked dilated cardiomyopathy (XLCM). Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[6][7][8]

FunctionFunction

[DMD_HUMAN] Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission.[9]

About this StructureAbout this Structure

1dxx is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

ReferenceReference

[xtra 1]

  1. Norwood FL, Sutherland-Smith AJ, Keep NH, Kendrick-Jones J. The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure. 2000 May 15;8(5):481-91. PMID:10801490
  1. Prior TW, Papp AC, Snyder PJ, Burghes AH, Bartolo C, Sedra MS, Western LM, Mendell JR. A missense mutation in the dystrophin gene in a Duchenne muscular dystrophy patient. Nat Genet. 1993 Aug;4(4):357-60. PMID:8401582 doi:http://dx.doi.org/10.1038/ng0893-357
  2. Prior TW, Bartolo C, Papp AC, Snyder PJ, Sedra MS, Burghes AH, Mendell JR. Identification of a missense mutation, single base deletion and a polymorphism in the dystrophin exon 16. Hum Mol Genet. 1994 Jul;3(7):1173-4. PMID:7981690
  3. Lenk U, Oexle K, Voit T, Ancker U, Hellner KA, Speer A, Hubner C. A cysteine 3340 substitution in the dystroglycan-binding domain of dystrophin associated with Duchenne muscular dystrophy, mental retardation and absence of the ERG b-wave. Hum Mol Genet. 1996 Jul;5(7):973-5. PMID:8817332
  4. Goldberg LR, Hausmanowa-Petrusewicz I, Fidzianska A, Duggan DJ, Steinberg LS, Hoffman EP. A dystrophin missense mutation showing persistence of dystrophin and dystrophin-associated proteins yet a severe phenotype. Ann Neurol. 1998 Dec;44(6):971-6. PMID:9851445 doi:10.1002/ana.410440619
  5. Eraslan S, Kayserili H, Apak MY, Kirdar B. Identification of point mutations in Turkish DMD/BMD families using multiplex-single stranded conformation analysis (SSCA). Eur J Hum Genet. 1999 Oct-Nov;7(7):765-70. PMID:10573008 doi:10.1038/sj.ejhg.5200370
  6. Ortiz-Lopez R, Li H, Su J, Goytia V, Towbin JA. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy. Circulation. 1997 May 20;95(10):2434-40. PMID:9170407
  7. Feng J, Yan JY, Buzin CH, Sommer SS, Towbin JA. Comprehensive mutation scanning of the dystrophin gene in patients with nonsyndromic X-linked dilated cardiomyopathy. J Am Coll Cardiol. 2002 Sep 18;40(6):1120-4. PMID:12354438
  8. Feng J, Yan J, Buzin CH, Towbin JA, Sommer SS. Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol Genet Metab. 2002 Sep-Oct;77(1-2):119-26. PMID:12359139
  9. Haenggi T, Fritschy JM. Role of dystrophin and utrophin for assembly and function of the dystrophin glycoprotein complex in non-muscle tissue. Cell Mol Life Sci. 2006 Jul;63(14):1614-31. PMID:16710609 doi:10.1007/s00018-005-5461-0

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA