1y2d: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{STRUCTURE_1y2d| PDB=1y2d | SCENE= }} | {{STRUCTURE_1y2d| PDB=1y2d | SCENE= }} | ||
===Catalytic Domain Of Human Phosphodiesterase 4D In Complex With 1-(4-methoxy-phenyl)-3,5-dimethyl-1H-pyrazole-4-carboxylic acid ethyl ester=== | |||
{{ABSTRACT_PUBMED_15685167}} | |||
=== | ==Disease== | ||
[[http://www.uniprot.org/uniprot/PDE4D_HUMAN PDE4D_HUMAN]] Note=Genetic variations in PDE4D might be associated with susceptibility to stroke. PubMed:17006457 states that association with stroke has to be considered with caution. Defects in PDE4D are the cause of acrodysostosis type 2, with or without hormone resistance (ACRDYS2) [MIM:[http://omim.org/entry/614613 614613]]. ACRDYS2 is a pleiotropic disorder characterized by skeletal, endocrine, and neurological abnormalities. Skeletal features include brachycephaly, midface hypoplasia with a small upturned nose, brachydactyly, and lumbar spinal stenosis. Endocrine abnormalities include hypothyroidism and hypogonadism in males and irregular menses in females. Developmental disability is a common finding but is variable in severity and can be associated with significant behavioral problems.<ref>PMID:22464250</ref> | |||
==Function== | |||
[[http://www.uniprot.org/uniprot/PDE4D_HUMAN PDE4D_HUMAN]] Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes.<ref>PMID:15260978</ref><ref>PMID:15576036</ref> | |||
==About this Structure== | ==About this Structure== | ||
Line 14: | Line 16: | ||
==Reference== | ==Reference== | ||
<ref group="xtra">PMID:015685167</ref><references group="xtra"/> | <ref group="xtra">PMID:015685167</ref><references group="xtra"/><references/> | ||
[[Category: 3',5'-cyclic-nucleotide phosphodiesterase]] | [[Category: 3',5'-cyclic-nucleotide phosphodiesterase]] | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] |
Revision as of 13:29, 24 March 2013
Catalytic Domain Of Human Phosphodiesterase 4D In Complex With 1-(4-methoxy-phenyl)-3,5-dimethyl-1H-pyrazole-4-carboxylic acid ethyl esterCatalytic Domain Of Human Phosphodiesterase 4D In Complex With 1-(4-methoxy-phenyl)-3,5-dimethyl-1H-pyrazole-4-carboxylic acid ethyl ester
Template:ABSTRACT PUBMED 15685167
DiseaseDisease
[PDE4D_HUMAN] Note=Genetic variations in PDE4D might be associated with susceptibility to stroke. PubMed:17006457 states that association with stroke has to be considered with caution. Defects in PDE4D are the cause of acrodysostosis type 2, with or without hormone resistance (ACRDYS2) [MIM:614613]. ACRDYS2 is a pleiotropic disorder characterized by skeletal, endocrine, and neurological abnormalities. Skeletal features include brachycephaly, midface hypoplasia with a small upturned nose, brachydactyly, and lumbar spinal stenosis. Endocrine abnormalities include hypothyroidism and hypogonadism in males and irregular menses in females. Developmental disability is a common finding but is variable in severity and can be associated with significant behavioral problems.[1]
FunctionFunction
[PDE4D_HUMAN] Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes.[2][3]
About this StructureAbout this Structure
1y2d is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.
See AlsoSee Also
ReferenceReference
- ↑ Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat Biotechnol. 2005 Feb;23(2):201-7. Epub 2005 Jan 30. PMID:15685167 doi:http://dx.doi.org/10.1038/nbt1059
- ↑ Michot C, Le Goff C, Goldenberg A, Abhyankar A, Klein C, Kinning E, Guerrot AM, Flahaut P, Duncombe A, Baujat G, Lyonnet S, Thalassinos C, Nitschke P, Casanova JL, Le Merrer M, Munnich A, Cormier-Daire V. Exome sequencing identifies PDE4D mutations as another cause of acrodysostosis. Am J Hum Genet. 2012 Apr 6;90(4):740-5. doi: 10.1016/j.ajhg.2012.03.003. Epub, 2012 Mar 29. PMID:22464250 doi:10.1016/j.ajhg.2012.03.003
- ↑ Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell. 2004 Jul 23;15(2):279-86. PMID:15260978 doi:http://dx.doi.org/10.1016/j.molcel.2004.07.005
- ↑ Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY. Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure. 2004 Dec;12(12):2233-47. PMID:15576036 doi:http://dx.doi.org/10.1016/j.str.2004.10.004