2bhb: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
==Overview== | ==Overview== | ||
The effect of metal substitution on the activity and structure of the | The effect of metal substitution on the activity and structure of the aminopeptidase P (APPro) from Escherichia coli has been investigated. Measurements of activity in the presence of Mn2+, Mg2+, Zn2+, Na+, and Ca2+ show that significant activity is seen only in the Mn-bound form of the enzyme. The addition of Zn2+ to [MnMn(APPro)] is strongly inhibitory. Crystal structures of [MnMn(APPro)], [MgMg(APPro)], [ZnZn(APPro)], [ZnMg(APPro)], [Ca_(APPro)], [Na_(APPro)], and [apo(APPro)] were determined. The structures of [Ca_(APPro)] and [Na_(APPro)] have a single metal atom at their active site. Surprisingly, when a tripeptide substrate (ValProLeu) was soaked into [Na_(APPro)] crystals in the presence of 200 mM Mg2+, the structure had substrate, but no metal, bound at the active site. The structure of apo APPro complexed with ValProLeu shows that the N-terminal amino group of a substrate can be bound at the active site by carboxylate side chains that normally bind the second metal atom, providing a model for substrate binding in a single-metal active enzyme. Structures of [MnMn(APPro)] and [ZnZn(APPro)] complexes of ProLeu, a product inhibitor, in the presence of excess Zn reveal a third metal-binding site, formed by two conserved His residues and the dipeptide inhibitor. A Zn atom bound at such a site would stabilize product binding and enhance inhibition. | ||
==About this Structure== | ==About this Structure== | ||
Line 14: | Line 14: | ||
[[Category: Single protein]] | [[Category: Single protein]] | ||
[[Category: Xaa-Pro aminopeptidase]] | [[Category: Xaa-Pro aminopeptidase]] | ||
[[Category: Bond, C | [[Category: Bond, C S.]] | ||
[[Category: Freeman, H | [[Category: Freeman, H C.]] | ||
[[Category: Graham, S | [[Category: Graham, S C.]] | ||
[[Category: Guss, J | [[Category: Guss, J M.]] | ||
[[Category: FLC]] | [[Category: FLC]] | ||
[[Category: MG]] | [[Category: MG]] | ||
Line 27: | Line 27: | ||
[[Category: proline-specific peptidase]] | [[Category: proline-specific peptidase]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 16:37:51 2008'' |
Revision as of 17:38, 21 February 2008
|
ZN SUBSTITUTED E. COLI AMINOPEPTIDASE P
OverviewOverview
The effect of metal substitution on the activity and structure of the aminopeptidase P (APPro) from Escherichia coli has been investigated. Measurements of activity in the presence of Mn2+, Mg2+, Zn2+, Na+, and Ca2+ show that significant activity is seen only in the Mn-bound form of the enzyme. The addition of Zn2+ to [MnMn(APPro)] is strongly inhibitory. Crystal structures of [MnMn(APPro)], [MgMg(APPro)], [ZnZn(APPro)], [ZnMg(APPro)], [Ca_(APPro)], [Na_(APPro)], and [apo(APPro)] were determined. The structures of [Ca_(APPro)] and [Na_(APPro)] have a single metal atom at their active site. Surprisingly, when a tripeptide substrate (ValProLeu) was soaked into [Na_(APPro)] crystals in the presence of 200 mM Mg2+, the structure had substrate, but no metal, bound at the active site. The structure of apo APPro complexed with ValProLeu shows that the N-terminal amino group of a substrate can be bound at the active site by carboxylate side chains that normally bind the second metal atom, providing a model for substrate binding in a single-metal active enzyme. Structures of [MnMn(APPro)] and [ZnZn(APPro)] complexes of ProLeu, a product inhibitor, in the presence of excess Zn reveal a third metal-binding site, formed by two conserved His residues and the dipeptide inhibitor. A Zn atom bound at such a site would stabilize product binding and enhance inhibition.
About this StructureAbout this Structure
2BHB is a Single protein structure of sequence from Escherichia coli with , , and as ligands. Active as Xaa-Pro aminopeptidase, with EC number 3.4.11.9 Known structural/functional Site: . Full crystallographic information is available from OCA.
ReferenceReference
Structural and functional implications of metal ion selection in aminopeptidase P, a metalloprotease with a dinuclear metal center., Graham SC, Bond CS, Freeman HC, Guss JM, Biochemistry. 2005 Oct 25;44(42):13820-36. PMID:16229471
Page seeded by OCA on Thu Feb 21 16:37:51 2008