Sandbox Reserved 714: Difference between revisions
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
The Human soluble Epoxide hydrolase is a protein of 555 residues. In vivo, it exists under the form of a homodimer, with a monomeric unit of 62,5 kDa. Each subunit has <scene name='Sandbox_Reserved_714/Catalytic_domains/5'>two catalytic domains</scene>, linked by a proline-rich section. | The Human soluble Epoxide hydrolase is a protein of 555 residues. In vivo, it exists under the form of a homodimer, with a monomeric unit of 62,5 kDa. Each subunit has <scene name='Sandbox_Reserved_714/Catalytic_domains/5'>two catalytic domains</scene>, linked by a proline-rich section. | ||
The secondary structure of this enzyme is made of beta-sheets and alpha-helices and a few 310-helices, which form the two pockets of the active sites, in the C-term domain and the N-term domain, in which the substrates (lipid-phosphates and ions for the N-term domain, and epoxides for the C-term domain) can bind. | The secondary structure of this enzyme is made of beta-sheets and alpha-helices and a few 310-helices, which form the two pockets of the active sites, in the C-term domain and the N-term domain, in which the substrates (lipid-phosphates and ions for the N-term domain, and epoxides for the C-term domain) can bind. The 3D dimensions of the enzyme are the following : a = 92.55 Å, b = 92.55 Å, c = 244.64 Å. | ||
The N-terminal domain has specific features that facilitate the binding of a lipid substrate. There are <scene name='Sandbox_Reserved_714/Nter_cleft-tunnel-activesite/2'>three sites</scene> that ensure the proper positioning of the substrate. First, a hydrophobic cleft of about 25 Å long is situated near the N-term core so that one of the two ends of the aliphatic substrate is near the interface between the two domains N-term and C-term (proline-rich linker). Secondly, a hydrophobic tunnel (about 14 Å long) binds the aliphatic chain of the substrate and allows the second end to be in the active site. The active site is a negatively charged pocket of about 15 Å deep, and contains a Mg<sup>2+</sup> cation necessary to the catalytic function. | The N-terminal domain has specific features that facilitate the binding of a lipid substrate. There are <scene name='Sandbox_Reserved_714/Nter_cleft-tunnel-activesite/2'>three sites</scene> that ensure the proper positioning of the substrate. First, a hydrophobic cleft of about 25 Å long is situated near the N-term core so that one of the two ends of the aliphatic substrate is near the interface between the two domains N-term and C-term (proline-rich linker). Secondly, a hydrophobic tunnel (about 14 Å long) binds the aliphatic chain of the substrate and allows the second end to be in the active site. The active site is a negatively charged pocket of about 15 Å deep, and contains a Mg<sup>2+</sup> cation necessary to the catalytic function. | ||
== Mechanism == | == Mechanism == |