1u9r: Difference between revisions

New page: left|200px<br /><applet load="1u9r" size="450" color="white" frame="true" align="right" spinBox="true" caption="1u9r, resolution 2.10Å" /> '''Crystal Structure of...
 
No edit summary
Line 1: Line 1:
[[Image:1u9r.gif|left|200px]]<br /><applet load="1u9r" size="450" color="white" frame="true" align="right" spinBox="true"  
[[Image:1u9r.gif|left|200px]]<br /><applet load="1u9r" size="350" color="white" frame="true" align="right" spinBox="true"  
caption="1u9r, resolution 2.10&Aring;" />
caption="1u9r, resolution 2.10&Aring;" />
'''Crystal Structure of Staphylococcal Nuclease mutant V66E/P117G/H124L/S128A at Room Temperature'''<br />
'''Crystal Structure of Staphylococcal Nuclease mutant V66E/P117G/H124L/S128A at Room Temperature'''<br />


==Overview==
==Overview==
The ionizable amino acid side chains of proteins are usually located at, the surface. However, in some proteins an ionizable group is embedded in, an apolar internal region. Such buried ionizable groups destabilize the, protein and may trigger conformational changes in response to pH, variations. Because of the prohibitive energetic cost of transferring a, charged group from water to an apolar medium, other stabilizing factors, must be invoked, such as ionization-induced water penetration or, structural changes. To examine the role of water penetration, we have, measured the 17O and 2H magnetic relaxation dispersions (MRD) for the V66E, and V66K mutants of staphylococcal nuclease, where glutamic acid and, lysine residues are buried in predominantly apolar environments. At, neutral pH, where these residues are uncharged, we find no evidence of, buried water molecules near the mutation site. This contrasts with a, previous cryogenic crystal structure of the V66E mutant, but is consistent, with the room-temperature crystal structure reported here. MRD, measurements at different pH values show that ionization of Glu-66 or, Lys-66 is not accompanied by penetration of long-lived water molecules. On, the other hand, the MRD data are consistent with a local conformational, change in response to ionization of the internal residues.
The ionizable amino acid side chains of proteins are usually located at the surface. However, in some proteins an ionizable group is embedded in an apolar internal region. Such buried ionizable groups destabilize the protein and may trigger conformational changes in response to pH variations. Because of the prohibitive energetic cost of transferring a charged group from water to an apolar medium, other stabilizing factors must be invoked, such as ionization-induced water penetration or structural changes. To examine the role of water penetration, we have measured the 17O and 2H magnetic relaxation dispersions (MRD) for the V66E and V66K mutants of staphylococcal nuclease, where glutamic acid and lysine residues are buried in predominantly apolar environments. At neutral pH, where these residues are uncharged, we find no evidence of buried water molecules near the mutation site. This contrasts with a previous cryogenic crystal structure of the V66E mutant, but is consistent with the room-temperature crystal structure reported here. MRD measurements at different pH values show that ionization of Glu-66 or Lys-66 is not accompanied by penetration of long-lived water molecules. On the other hand, the MRD data are consistent with a local conformational change in response to ionization of the internal residues.


==About this Structure==
==About this Structure==
1U9R is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Active as [http://en.wikipedia.org/wiki/Micrococcal_nuclease Micrococcal nuclease], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.31.1 3.1.31.1] Full crystallographic information is available from [http://ispc.weizmann.ac.il/oca-bin/ocashort?id=1U9R OCA].  
1U9R is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Active as [http://en.wikipedia.org/wiki/Micrococcal_nuclease Micrococcal nuclease], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.31.1 3.1.31.1] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1U9R OCA].  


==Reference==
==Reference==
Line 14: Line 14:
[[Category: Single protein]]
[[Category: Single protein]]
[[Category: Staphylococcus aureus]]
[[Category: Staphylococcus aureus]]
[[Category: Denisov, V.P.]]
[[Category: Denisov, V P.]]
[[Category: Garcia-Moreno, B.E.]]
[[Category: Garcia-Moreno, B E.]]
[[Category: Halle, B.]]
[[Category: Halle, B.]]
[[Category: Schlessman, J.L.]]
[[Category: Schlessman, J L.]]
[[Category: hyperstable variant]]
[[Category: hyperstable variant]]
[[Category: internal waters]]
[[Category: internal waters]]
Line 23: Line 23:
[[Category: staphylococcal nuclease]]
[[Category: staphylococcal nuclease]]


''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Wed Nov 21 03:56:55 2007''
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 15:22:08 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA