Sandbox Reserved 644: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 18: Line 18:


=='''Argininosuccinate Synthetase'''==
=='''Argininosuccinate Synthetase'''==
===='''Introduction'''====
Argininosuccinate synthetase (ASS) catalyses the condensation of citrulline and aspartate to form argininosuccinate, the immediate precursor of arginine. First identified in the liver as the limiting enzyme of the urea cycle, ASS is now recognized as a ubiquitous enzyme in mammalian tissues. Since its discovery, the function of argininosuccinate synthase has been linked almost exclusively to hepatic urea production despite the fact that alternative pathways involving argininosuccinate synthase were defined, such as its role in providing arginine for creatine and for polyamine biosynthesis. Argininosuccinate synthase plays an important role as the rate-limiting step in providing arginine for an assortment of metabolic processes,
both catabolic and anabolic. Thus, the metabolic pathways in which argininosuccinate synthase participates are linked to the varied uses of the amino acid arginine. There are five major pathways in which argininosuccinate synthase plays a key role. These are (a) urea synthesis,(b) nitric oxide synthesis, (c) polyamine synthesis, (d) creatine synthesis, and (e) the de novo synthesis of arginine to maintain serum levels.


===='''Structure'''====
===='''Structure'''====

Revision as of 06:50, 14 November 2012

This Sandbox is Reserved from 30/08/2012, through 01/02/2013 for use in the course "Proteins and Molecular Mechanisms" taught by Robert B. Rose at the North Carolina State University, Raleigh, NC USA. This reservation includes Sandbox Reserved 636 through Sandbox Reserved 685.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

For more help, look at this link: http://proteopedia.org/w/Help:Getting_Started_in_Proteopedia

Ornithine TranscarbamoylaseOrnithine Transcarbamoylase

IntroductionIntroduction

(OTC) is an enzyme that catalyzes the reaction between carbamoyl phosphate and ornithine to form citrulline and phosphate, and this occurs during the second step of the urea cycle. In plants and microbes, OTC is involved in arginine biosynthesis, but in mammals it is located in the mitochondria and is part of the urea cycle.[1] OTC is often associated with Ornithine transcarbamoylase deficiency (OTCD). OTCD is a common urea cycle disorder, and it is a genetic disorder which results in a mutated and ineffective form of the enzyme OTC. The gene is located on the short arm of chromosome X (Xp21.1). The gene is located in the Watson (plus) strand and is 68,968 bases in length. The encoded protein is 354 amino acids long with a predicted molecular weight of 39.935 kiloDaltons. The protein is located in the mitochondrial matrix.[2]

StructureStructure

OTC is a trimer. The monomer unit has a CP-binding domain and an amino acid-binding domain. Each of the two discrete substrate-binding domains (SBDs) have an α/β topology with a central β-pleated sheet embedded in flanking α-helices. The are located at the interface between the protein monomers.[3]The crystal structure of human ornithine transcarbamylase (OTCase) complexed with carbamoyl phosphate (CP) and L-norvaline (NOR) has been determined to 1.9-A resolution. There are significant differences in the interactions of CP with the protein, compared with the interactions of the CP moiety of the bisubstrate analogue N-(phosphonoacetyl)-L-ornithine (PALO). The carbonyl plane of CP rotates about 60 degrees compared with the equivalent plane in PALO complexed with OTCase. This positions the side chain of NOR optimally to interact with the carbonyl carbon of CP. The mixed-anhydride oxygen of CP, which is analogous to the methylene group in PALO, interacts with the guanidinium group of Arg-92; the primary carbamoyl nitrogen interacts with the main-chain carbonyl oxygens of Cys-303 and Leu-304, the side chain carbonyl oxygen of Gln-171, and the side chain of Arg-330. The residues that interact with NOR are similar to the residues that interact with the ornithine (ORN) moiety of PALO. The side chain of NOR is well defined and close to the side chain of Cys-303 with the side chains of Leu-163, Leu-200, Met-268, and Pro-305 forming a hydrophobic wall. C-delta of NOR is close to the carbonyl oxygen of Leu-304 (3.56 A), S-gamma atom of Cys-303 (4.19 A), and carbonyl carbon of CP (3.28 A). Even though the N-epsilon atom of ornithine is absent in this structure, the side chain of NOR is positioned to enable the N-epsilon of ornithine to donate a hydrogen to the S-gamma atom of Cys-303 along the reaction pathway. Binding of CP and NOR promotes domain closure to the same degree as PALO, and the active site structure of CP-NOR-enzyme complex is similar to that of the PALO-enzyme complex. The structures of the active sites in the complexes of aspartate transcarbamylase (ATCase) with various substrates or inhibitors are similar to this OTCase structure, consistent with their common evolutionary origin.Cite error: Closing </ref> missing for <ref> tag

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA, Nick Shimko, Thomas Schmitt