1jp3: Difference between revisions
New page: left|200px<br /><applet load="1jp3" size="450" color="white" frame="true" align="right" spinBox="true" caption="1jp3, resolution 1.80Å" /> '''Structure of E.coli ... |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:1jp3.jpg|left|200px]]<br /><applet load="1jp3" size=" | [[Image:1jp3.jpg|left|200px]]<br /><applet load="1jp3" size="350" color="white" frame="true" align="right" spinBox="true" | ||
caption="1jp3, resolution 1.80Å" /> | caption="1jp3, resolution 1.80Å" /> | ||
'''Structure of E.coli undecaprenyl pyrophosphate synthase'''<br /> | '''Structure of E.coli undecaprenyl pyrophosphate synthase'''<br /> | ||
==Overview== | ==Overview== | ||
The Escherichia coli undecaprayl-pyrophosphate synthase (UPPs) structure | The Escherichia coli undecaprayl-pyrophosphate synthase (UPPs) structure has been solved using the single wavelength anomalous diffraction method. The putative substrate-binding site is located near the end of the betaA-strand with Asp-26 playing a critical catalytic role. In both subunits, an elongated hydrophobic tunnel is found, surrounded by four beta-strands (betaA-betaB-betaD-betaC) and two helices (alpha2 and alpha3) and lined at the bottom with large residues Ile-62, Leu-137, Val-105, and His-103. The product distributions formed by the use of the I62A, V105A, and H103A mutants are similar to those observed for wild-type UPPs. Catalysis by the L137A UPPs, on the other hand, results in predominantly the formation of the C(70) polymer rather than the C(55) polymer. Ala-69 and Ala-143 are located near the top of the tunnel. In contrast to the A143V reaction, the C(30) intermediate is formed to a greater extent and is longer lived in the process catalyzed by the A69L mutant. These findings suggest that the small side chain of Ala-69 is required for rapid elongation to the C(55) product, whereas the large hydrophobic side chain of Leu-137 is required to limit the elongation to the C(55) product. The roles of residues located on a flexible loop were investigated. The S71A, N74A, or R77A mutants displayed 25-200-fold decrease in k(cat) values. W75A showed an 8-fold increase of the FPP K(m) value, and 22-33-fold increases in the IPP K(m) values were observed for E81A and S71A. The loop may function to bridge the interaction of IPP with FPP, needed to initiate the condensation reaction and serve as a hinge to control the substrate binding and product release. | ||
==About this Structure== | ==About this Structure== | ||
1JP3 is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] with EGC as [http://en.wikipedia.org/wiki/ligand ligand]. Active as [http://en.wikipedia.org/wiki/Di-trans,poly-cis-decaprenylcistransferase Di-trans,poly-cis-decaprenylcistransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.31 2.5.1.31] Full crystallographic information is available from [http:// | 1JP3 is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] with <scene name='pdbligand=EGC:'>EGC</scene> as [http://en.wikipedia.org/wiki/ligand ligand]. Active as [http://en.wikipedia.org/wiki/Di-trans,poly-cis-decaprenylcistransferase Di-trans,poly-cis-decaprenylcistransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.31 2.5.1.31] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JP3 OCA]. | ||
==Reference== | ==Reference== | ||
Line 14: | Line 14: | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Single protein]] | [[Category: Single protein]] | ||
[[Category: Chen, A | [[Category: Chen, A P.C.]] | ||
[[Category: Chen, Y | [[Category: Chen, Y K.]] | ||
[[Category: Gao, Y | [[Category: Gao, Y G.]] | ||
[[Category: Ko, T | [[Category: Ko, T P.]] | ||
[[Category: Liang, P | [[Category: Liang, P H.]] | ||
[[Category: Robinson, H.]] | [[Category: Robinson, H.]] | ||
[[Category: Tsai, P | [[Category: Tsai, P C.]] | ||
[[Category: Wang, A | [[Category: Wang, A H.J.]] | ||
[[Category: EGC]] | [[Category: EGC]] | ||
[[Category: flexible loop]] | [[Category: flexible loop]] | ||
Line 28: | Line 28: | ||
[[Category: rossmann fold]] | [[Category: rossmann fold]] | ||
''Page seeded by [http:// | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 13:25:08 2008'' |
Revision as of 14:25, 21 February 2008
|
Structure of E.coli undecaprenyl pyrophosphate synthase
OverviewOverview
The Escherichia coli undecaprayl-pyrophosphate synthase (UPPs) structure has been solved using the single wavelength anomalous diffraction method. The putative substrate-binding site is located near the end of the betaA-strand with Asp-26 playing a critical catalytic role. In both subunits, an elongated hydrophobic tunnel is found, surrounded by four beta-strands (betaA-betaB-betaD-betaC) and two helices (alpha2 and alpha3) and lined at the bottom with large residues Ile-62, Leu-137, Val-105, and His-103. The product distributions formed by the use of the I62A, V105A, and H103A mutants are similar to those observed for wild-type UPPs. Catalysis by the L137A UPPs, on the other hand, results in predominantly the formation of the C(70) polymer rather than the C(55) polymer. Ala-69 and Ala-143 are located near the top of the tunnel. In contrast to the A143V reaction, the C(30) intermediate is formed to a greater extent and is longer lived in the process catalyzed by the A69L mutant. These findings suggest that the small side chain of Ala-69 is required for rapid elongation to the C(55) product, whereas the large hydrophobic side chain of Leu-137 is required to limit the elongation to the C(55) product. The roles of residues located on a flexible loop were investigated. The S71A, N74A, or R77A mutants displayed 25-200-fold decrease in k(cat) values. W75A showed an 8-fold increase of the FPP K(m) value, and 22-33-fold increases in the IPP K(m) values were observed for E81A and S71A. The loop may function to bridge the interaction of IPP with FPP, needed to initiate the condensation reaction and serve as a hinge to control the substrate binding and product release.
About this StructureAbout this Structure
1JP3 is a Single protein structure of sequence from Escherichia coli with as ligand. Active as Di-trans,poly-cis-decaprenylcistransferase, with EC number 2.5.1.31 Full crystallographic information is available from OCA.
ReferenceReference
Mechanism of product chain length determination and the role of a flexible loop in Escherichia coli undecaprenyl-pyrophosphate synthase catalysis., Ko TP, Chen YK, Robinson H, Tsai PC, Gao YG, Chen AP, Wang AH, Liang PH, J Biol Chem. 2001 Dec 14;276(50):47474-82. Epub 2001 Oct 1. PMID:11581264
Page seeded by OCA on Thu Feb 21 13:25:08 2008