Forkhead Box Protein 3: Difference between revisions

David Canner (talk | contribs)
No edit summary
David Canner (talk | contribs)
No edit summary
Line 9: Line 9:
The FOXP3 Forkhead Domain forms a relatively unique **domain swapped dimer** that bridges two unique oligonucletodies. This dimer is stabilized by a network of **hydrophobic** (Phe340, Leu345, Trp348, Trp366, and Met370)and **aromatic residues,** (Tyr364, Trp366, Phe371, Phe 373, and Trp381) all of which are highly conserved across the FOX superfamily. Mutations to several of these residues, and others, such as **F371C, F373A, R347A** interfere with dimer formation and are known to occur in IPEX patients. Dimerization is unique to FOXP3 among the FOX superfamily likely due to residues **Trp348 and Met370**. When these residues are mutated to Gln and Thr respectively, to match those residues found in FOXP2, dimer formation is abolished. <ref name="Chen"/> Here is a morph estimating the **transition from monomer to domain-swapped dimer**.  
The FOXP3 Forkhead Domain forms a relatively unique **domain swapped dimer** that bridges two unique oligonucletodies. This dimer is stabilized by a network of **hydrophobic** (Phe340, Leu345, Trp348, Trp366, and Met370)and **aromatic residues,** (Tyr364, Trp366, Phe371, Phe 373, and Trp381) all of which are highly conserved across the FOX superfamily. Mutations to several of these residues, and others, such as **F371C, F373A, R347A** interfere with dimer formation and are known to occur in IPEX patients. Dimerization is unique to FOXP3 among the FOX superfamily likely due to residues **Trp348 and Met370**. When these residues are mutated to Gln and Thr respectively, to match those residues found in FOXP2, dimer formation is abolished. <ref name="Chen"/> Here is a morph estimating the **transition from monomer to domain-swapped dimer**.  


 
The two DNA binding helices bind unique sequences from the IL-2 promoter, primarily utilizing residues **asfdasdfsafdasf**. These oligonucletodies are held in an antiparllel conformation, making it unlikely that FOXP3 would be able to bind nearby FOXP3 binding sites, due to steric hindrance.<ref name="Chen"/>




Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky, David Canner