RNaseA Nobel Prizes: Difference between revisions

Jump to navigation Jump to search
Michal Harel (talk | contribs)
No edit summary
Eric Martz (talk | contribs)
Line 1: Line 1:
== '''Introduction''' ==
== '''Introduction''' ==
Ribonuclease A has been the subject of Nobel Prizes on Protein Folding and Solid Phase Peptide Synthesis.<ref name="Raines"> PMID:11848924</ref> The observation of ribonuclease folding helped Christian Anfinsen win the Nobel Prize in 1972 for his work on protein folding <ref>'Anfinsen Nobel Lecture' [http://nobelprize.org/nobel_prizes/chemistry/laureates/1972/anfinsen-lecture.html]</ref>. The presence of four disulfide bonds and two ''cis'' proline residues in the structure of RNase A greatly affects the structure and folding kinetics of RNase A <ref>'Anfinsen Nobel Biography' [http://nobelprize.org/nobel_prizes/chemistry/laureates/1972/anfinsen-bio.html]</ref>. When RNase A undergoes reductive denaturation, it spontaneously folds back on itself to form the same structure.  The development of solid phase synthesis by Bruce Merrifield (Nobel Prize 1984) was a radical departure from traditional methods of bio-molecular synthesis that greatly increased efficiency. His method made possible the syntheses of much larger and more complex molecules; however, solid phase synthesis was not fully embraced until he demonstrated its full ability with the complete synthesis of Ribonuclease A.[http://nobelprize.org/nobel_prizes/chemistry/laureates/1984/merrifield-lecture.pdf]
Ribonuclease A has been the subject of [[Nobel Prizes for 3D Molecular Structure|Nobel Prizes on Protein Folding]] and Solid Phase Peptide Synthesis.<ref name="Raines"> PMID:11848924</ref> The observation of ribonuclease folding helped Christian Anfinsen win the Nobel Prize in 1972 for his work on protein folding <ref>'Anfinsen Nobel Lecture' [http://nobelprize.org/nobel_prizes/chemistry/laureates/1972/anfinsen-lecture.html]</ref>. The presence of four disulfide bonds and two ''cis'' proline residues in the structure of RNase A greatly affects the structure and folding kinetics of RNase A <ref>'Anfinsen Nobel Biography' [http://nobelprize.org/nobel_prizes/chemistry/laureates/1972/anfinsen-bio.html]</ref>. When RNase A undergoes reductive denaturation, it spontaneously folds back on itself to form the same structure.  The development of solid phase synthesis by Bruce Merrifield (Nobel Prize 1984) was a radical departure from traditional methods of bio-molecular synthesis that greatly increased efficiency. His method made possible the syntheses of much larger and more complex molecules; however, solid phase synthesis was not fully embraced until he demonstrated its full ability with the complete synthesis of Ribonuclease A.[http://nobelprize.org/nobel_prizes/chemistry/laureates/1984/merrifield-lecture.pdf]


== '''Protein Folding''' ==
== '''Protein Folding''' ==

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

R. Jeremy Johnson, Wayne Decatur, Michal Harel, Eric Martz, Alexander Berchansky, Angel Herraez, Karsten Theis