Enolase: Difference between revisions
Michal Harel (talk | contribs) No edit summary |
Michal Harel (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
[[Image:1one.png|left|200px|thumb|Crystal Structure of Enolase, [[1one]]]] | |||
{{STRUCTURE_1one| PDB=1one | SIZE=300| SCENE=Enolase/Enolase/1 |right|CAPTION=Yeast enolase complex with phosphoenolpyruvate and phosphoglycerate [[1one]] } | |||
<scene name='Cory_Tiedeman_Sandbox_1/Enolase/1'>Enolase</scene> is an enzyme that catalyzes a reaction of glycolysis. Glycolysis converts glucose into two 3-carbon molecules called pyruvate. The energy released during glycolysis is used to make ATP.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=487|}}</ref> Enolase is used to convert 2-phosphoglycerate (2PG) to phosphoenolpyruvate (PEP) in the 9th reaction of glycolysis: it is a reversible dehydration reaction.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=500|}}</ref>. Enolase is expressed abundantly in most cells and has been proven useful as a model to study mechanisms of enzyme action and structural analysis <ref>{{journal}}</ref>. | <scene name='Cory_Tiedeman_Sandbox_1/Enolase/1'>Enolase</scene> is an enzyme that catalyzes a reaction of glycolysis. Glycolysis converts glucose into two 3-carbon molecules called pyruvate. The energy released during glycolysis is used to make ATP.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=487|}}</ref> Enolase is used to convert 2-phosphoglycerate (2PG) to phosphoenolpyruvate (PEP) in the 9th reaction of glycolysis: it is a reversible dehydration reaction.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=500|}}</ref>. Enolase is expressed abundantly in most cells and has been proven useful as a model to study mechanisms of enzyme action and structural analysis <ref>{{journal}}</ref>. |