Enolase: Difference between revisions

Michal Harel (talk | contribs)
No edit summary
Michal Harel (talk | contribs)
No edit summary
Line 1: Line 1:
<Structure load='1one' size='300' frame='true' align='right' SCENE=Enolase/Enolase/1 CAPTION='Yeast enolase complex with phosphoenolpyruvate and phosphoglycerate [[1one]]' scene='' />
[[Image:1one.png|left|200px|thumb|Crystal Structure of Enolase, [[1one]]]]
{{STRUCTURE_1one|  PDB=1one | SIZE=300| SCENE=Enolase/Enolase/1 |right|CAPTION=Yeast enolase complex with phosphoenolpyruvate and phosphoglycerate [[1one]] }
 


[[Image:1one.png|left|200px]]
{{STRUCTURE_1one |  PDB=1one  |  SCENE=  }}


<scene name='Cory_Tiedeman_Sandbox_1/Enolase/1'>Enolase</scene> is an enzyme that catalyzes a reaction of glycolysis.  Glycolysis converts glucose into two 3-carbon molecules called pyruvate.  The energy released during glycolysis is used to make ATP.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=487|}}</ref>  Enolase is used to convert 2-phosphoglycerate (2PG) to phosphoenolpyruvate (PEP) in the 9th reaction of glycolysis: it is a reversible dehydration reaction.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=500|}}</ref>.  Enolase is expressed abundantly in most cells and has been proven useful as a model to study mechanisms of enzyme action and structural analysis <ref>{{journal}}</ref>.
<scene name='Cory_Tiedeman_Sandbox_1/Enolase/1'>Enolase</scene> is an enzyme that catalyzes a reaction of glycolysis.  Glycolysis converts glucose into two 3-carbon molecules called pyruvate.  The energy released during glycolysis is used to make ATP.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=487|}}</ref>  Enolase is used to convert 2-phosphoglycerate (2PG) to phosphoenolpyruvate (PEP) in the 9th reaction of glycolysis: it is a reversible dehydration reaction.<ref>{{textbook |author=Voet, Donald; Voet, Judith C.; Pratt, Charlotte W.|title=Fundamentals of Biochemistry: Life at the Molecular Level|edition= 3|pages=500|}}</ref>.  Enolase is expressed abundantly in most cells and has been proven useful as a model to study mechanisms of enzyme action and structural analysis <ref>{{journal}}</ref>.

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Cory Tiedeman, David Canner, Michal Harel, Alexander Berchansky, Jaime Prilusky, Joel L. Sussman