User:David Canner/Sandbox good: Difference between revisions

David Canner (talk | contribs)
No edit summary
David Canner (talk | contribs)
No edit summary
Line 5: Line 5:


==Scene Transitions==
==Scene Transitions==
<StructureSection load='1dq8' size='500' side='right' scene='HMG-CoA_Reductase/1dq8_starting_scene/1' caption='Structure of HMG-CoA reductase (PDB entry [[1dq8]])'>
===Smooth Transitions===
===Smooth Transitions===
<StructureSection load='1dq8' size='500' side='right' scene='HMG-CoA_Reductase/1dq8_starting_scene/1' caption='Structure of HMG-CoA reductase (PDB entry [[1dq8]])'>
<b>Tip #1: When developing a series of scenes illustrating related parts of a protein, use the “transition options” to create smooth transitions void of peculiar zoom-outs, etc.</b>
Tip #1: When developing a series of scenes illustrating related parts of a protein, use the “transition options” to create smooth transitions void of peculiar zoom-outs, etc.
Example from the page [[HMG-CoA Reductase]]:  
Example from the page [[HMG-CoA Reductase]]:  
The HMG binding pocket is the site of catalysis in HMGR. <scene name='HMG-CoA_Reductase/1dqa_cis_loop2/2'> The “cis-loop” that bends over the top of HMG </scene> is a critical structural element of this binding site. Residues <scene name='HMG-CoA_Reductase/1dqa_e_and_d/2'>E559 and D767</scene> and are positioned in the active site as is <scene name='HMG-CoA_Reductase/1dqa_k691/2'>K691 which is only 2.7 angstroms from the HMG O2 carbonyl oxygen</scene>. It is this K691 that likely stabilizes the negatively charged oxygen of the first mevaldyl-CoA intermediate. The mevaldyl CoA intermediate is subsequently converted to Mavaldehyde with added stabilization from <scene name='HMG-CoA_Reductase/1dqa_h866/2'>H866, which is within hydrogen bonding distance of the thiol group</scene>.  It is then believed that the close proximity of <scene name='HMG-CoA_Reductase/1dqa_e_and_d/2'>E559 and D767</scene> increases the pKA of E559, allowing it to be a proton donor for the reduction of mevaldehyde into mevalonate.<br />
The HMG binding pocket is the site of catalysis in HMGR. <scene name='HMG-CoA_Reductase/1dqa_cis_loop2/2'> The “cis-loop” that bends over the top of HMG </scene> is a critical structural element of this binding site. Residues <scene name='HMG-CoA_Reductase/1dqa_e_and_d/2'>E559 and D767</scene> and are positioned in the active site as is <scene name='HMG-CoA_Reductase/1dqa_k691/2'>K691 which is only 2.7 angstroms from the HMG O2 carbonyl oxygen</scene>. It is this K691 that likely stabilizes the negatively charged oxygen of the first mevaldyl-CoA intermediate. The mevaldyl CoA intermediate is subsequently converted to Mavaldehyde with added stabilization from <scene name='HMG-CoA_Reductase/1dqa_h866/2'>H866, which is within hydrogen bonding distance of the thiol group</scene>.  It is then believed that the close proximity of <scene name='HMG-CoA_Reductase/1dqa_e_and_d/2'>E559 and D767</scene> increases the pKA of E559, allowing it to be a proton donor for the reduction of mevaldehyde into mevalonate.<br />