Sandbox 50: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
===Polar and Nonpolar Residues=== | ===Polar and Nonpolar Residues=== | ||
Trypsin's distribution of <scene name='Sandbox_50/Nonpolarandpolar/1'>polar and nonpolar residues</scene> follow the rules of the hydrophobic effect. The nonpolar (gray) residues are located on the interior of the protein so they can be shielded from water, while the polar (purple) residues are distributed on the exterior of the protein because they can interact with water. This <scene name='Sandbox_50/Nonpolarandpolarspacefilled/1'>spacefill</scene> model shows the distribution of the hydrophilic and hydrophobic residues and the actual space they occupy. Again the hydrophobic, nonpolar residues are shown in gray, and the hydrophilic, polar residues are purple. This type of residue distribution in trypsin is entropically favorable becuase the water surrounding the protein does not become ordered. | Trypsin's distribution of <scene name='Sandbox_50/Nonpolarandpolar/1'>polar and nonpolar residues</scene> follow the rules of the hydrophobic effect. The nonpolar (gray) residues are located on the interior of the protein so they can be shielded from water, while the polar (purple) residues are distributed on the exterior of the protein because they can interact with water. This <scene name='Sandbox_50/Nonpolarandpolarspacefilled/1'>spacefill</scene> model shows the distribution of the hydrophilic and hydrophobic residues and the actual space they occupy. Again the hydrophobic, nonpolar residues are shown in gray, and the hydrophilic, polar residues are purple. This type of residue distribution in trypsin is entropically favorable becuase the water surrounding the protein does not become ordered. | ||
==Attractions Between Structural Components and the Remainder of the Protein== | ==Attractions Between Structural Components and the Remainder of the Protein== | ||
===Disulfide Bonds=== | ===Disulfide Bonds=== | ||
Trypsin contains three <scene name='Sandbox_50/Disulfidebonds/1'>disulfide bonds</scene> involving six cysteine residues. These disulfide bonds are intramolecular forces that stabalize the tertiary structure of Trypsin. The figure shows the yellow disulfide bonds between the cysteine residues connecting two random coils, connecting one of the alpha helices to the beta sheet, and the other disulfide connecting the two alpha helices. | Trypsin contains three <scene name='Sandbox_50/Disulfidebonds/1'>disulfide bonds</scene> involving six cysteine residues. These disulfide bonds are intramolecular forces that stabalize the tertiary structure of Trypsin. The figure shows the yellow disulfide bonds between the cysteine residues connecting two random coils, connecting one of the alpha helices to the beta sheet, and the other disulfide connecting the two alpha helices. | ||
===Residue Charge=== | |||
This -charge figure- shows the different charges of the amino acid residues that make up Trypsin. The blue residues have cationic side chains, the red residues have anionic side chains, the light purple are the polar, uncharged residues, and the gray residues are hydrophobic. When compared to the spacefilled figure above, the direct correlation between polarity of the side chain and charge of the side chain can be seen. Those residues with charged (blue and red) side chains as well as the polar, uncharged residues are the residues on the exterior of the protein, while the hydrophobic residues remain at the protein's core. Those residues that are cationic and anionic are able to participate in salt bridges. | |||
==Ligand Contacts== |
Revision as of 23:55, 29 October 2010
Please do NOT make changes to this Sandbox. Sandboxes 30-60 are reserved for use by Biochemistry 410 & 412 at Messiah College taught by Dr. Hannah Tims during Fall 2012 and Spring 2013.
Trypsin
|