Sandbox 173: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:


As this ligand is bound in the 12-s-''trans'' conformation, there arises the non-bonding interactions between the C-13 methyl group and C-10 hydrogen that contribute to non-planarity. This leads to the ability of the chromophore polyene tail to undergo fast photoisomerization around the C-11=C-12 double bond during light-induced activation<ref name="Article2">PMID:16962138</ref>. Also, it is found that the C-11=C-12 double bond is pre-twisted in the ground state of rhodopsin, which is partly attributed to the C20 methyl group attached to C13 through interaction with Tryptophan 265. This pre-twist may give insight on the features of isomerization about this bond upon light activation<ref name="ReferenceArticle"/>.
As this ligand is bound in the 12-s-''trans'' conformation, there arises the non-bonding interactions between the C-13 methyl group and C-10 hydrogen that contribute to non-planarity. This leads to the ability of the chromophore polyene tail to undergo fast photoisomerization around the C-11=C-12 double bond during light-induced activation<ref name="Article2">PMID:16962138</ref>. Also, it is found that the C-11=C-12 double bond is pre-twisted in the ground state of rhodopsin, which is partly attributed to the C20 methyl group attached to C13 through interaction with Tryptophan 265. This pre-twist may give insight on the features of isomerization about this bond upon light activation<ref name="ReferenceArticle"/>.
Somewhat enclosing this chromophore is a retinal binding pocket partially formed by the N-terminal domain overlaying the extracellular turns including Extracellular Helix 2, which folds into the molecular center<ref name="Article6">PMID:18692154</ref>.
Somewhat enclosing this chromophore is a retinal binding pocket partially formed by the N-terminal domain overlaying the extracellular turns including the second extracellular loop, which folds into the molecular center<ref name="Article6">PMID:18692154</ref>.




Line 42: Line 42:
<applet load='1u19' size='300' color='black' frame='true' align='right' caption='Residues Involved in Activation of Rhodopsin. The generated structure is from Chain A.'/>
<applet load='1u19' size='300' color='black' frame='true' align='right' caption='Residues Involved in Activation of Rhodopsin. The generated structure is from Chain A.'/>
====Photoisomeration of 11-''cis'' Retinal====
====Photoisomeration of 11-''cis'' Retinal====
The 11-''cis'' retinal (retinylidene) Schiff base functions as an [http://en.wikipedia.org/wiki/Inverse_agonist inverse agonist] and is prominently involved in the activation of rhodopsin. The primary step in rhodopsin photoactivation occurs in the photoisomeration of rhodopsin, as light energy absorbed from a photon is converted into chemical energy, As a photon is absorbed by the retina, the 11-''cis'' retinylidene ligand is switched into an all-''trans'' retinal configuration<ref name="Article2"/>. In this extremely efficient <200 fs process, the protein-binding pocket, initially fitted to accommodate the 11-''cis'' conformation of the chromophore, is preserved, which restrains the relaxation of the chromophore. The strained relaxation of conformational energy changes the protein state into the active form<ref name="Article2"/>.
The 11-''cis'' retinal (retinylidene) Schiff base functions as an [http://en.wikipedia.org/wiki/Inverse_agonist inverse agonist] and is prominently involved in the activation of rhodopsin. The primary step in rhodopsin photoactivation occurs in the photoisomeration of rhodopsin, as light energy absorbed from a photon is converted into chemical energy. As a photon is absorbed by the retina, the 11-''cis'' retinylidene ligand is switched into an all-''trans'' retinal configuration<ref name="Article2"/>. In this extremely efficient <200 fs process, the protein-binding pocket, initially fitted to accommodate the 11-''cis'' conformation of the chromophore, is preserved, which restrains the relaxation of the chromophore. The strained relaxation of conformational energy changes the protein state into the active form<ref name="Article2"/>.


====Adjustment and Thermal Relaxation of the Protein====
====Adjustment and Thermal Relaxation of the Protein====

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Andrea Gorrell, Cinting Lim