Sandbox 174: Difference between revisions

No edit summary
No edit summary
Line 7: Line 7:


A large amount of highly homologous snake neurotoxins have been sequenced (>60), and can be grouped into two major classes. Short neurotoxins are between 60-62 amino acids long, and consist of four disulphide bonds, and long neurotoxins, which α-BGT falls under, are between 71-74 amino acids long and contain five <scene name='Sandbox_174/Disulphides/2'>Disulphide Bonds</scene>. α-BGT contains 74 amino acids, and is one of the major components of ''Bungarus multicuntus'' venom. Chemical modifications of individual residues has shown that no single amino acid is mandatory for binding, signifying the significance of structure, rather than sequence, and the concept of multicontact interaction with the acetylcholine receptor <ref> Karlsson, 1979;Low 1979</ref>. The importance of structure in binding has been tested by Love & Stroud (1986)<ref name="main">Love, A.R (FINISH)</ref> by determining whether the homology and common mode of action of neurotoxins is facilitated by the three-dimensional structure. Using X-ray crystallography at various resolutions, neurotoxins erabutoxin and cobratoxin were compared to that of α-BGT to determine the level of three-dimensional similarity.
A large amount of highly homologous snake neurotoxins have been sequenced (>60), and can be grouped into two major classes. Short neurotoxins are between 60-62 amino acids long, and consist of four disulphide bonds, and long neurotoxins, which α-BGT falls under, are between 71-74 amino acids long and contain five <scene name='Sandbox_174/Disulphides/2'>Disulphide Bonds</scene>. α-BGT contains 74 amino acids, and is one of the major components of ''Bungarus multicuntus'' venom. Chemical modifications of individual residues has shown that no single amino acid is mandatory for binding, signifying the significance of structure, rather than sequence, and the concept of multicontact interaction with the acetylcholine receptor <ref> Karlsson, 1979;Low 1979</ref>. The importance of structure in binding has been tested by Love & Stroud (1986)<ref name="main">Love, A.R (FINISH)</ref> by determining whether the homology and common mode of action of neurotoxins is facilitated by the three-dimensional structure. Using X-ray crystallography at various resolutions, neurotoxins erabutoxin and cobratoxin were compared to that of α-BGT to determine the level of three-dimensional similarity.
<scene name='Sandbox_174/Domain_b/1'>Domain A</scene>
<scene name='Sandbox_174/Domain_b/3'>Domain A</scene>
<scene name='Sandbox_174/Domain_a/1'>Domain B</scene>
<scene name='Sandbox_174/Domain_a/3'>Domain B</scene>




Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Andrea Gorrell, Simon Loewen, Student