Citrate Synthase: Difference between revisions
Line 6: | Line 6: | ||
'''Mechanism:''' The reaction mechanism for citrate synthase was proposed by James Remington. In this mechanism, three ionizable side chains in the | '''Mechanism:''' The reaction mechanism for citrate synthase was proposed by James Remington. In this mechanism, three ionizable side chains in the | ||
<scene name='Daniel_Eddelman_Sandbox_2/Cts_active_site/ | <scene name='Daniel_Eddelman_Sandbox_2/Cts_active_site/2'>active site</scene> of citrate synthase participate in acid-base catalysis: His 274, His 320, and Asp 375. First, Asp 375 (a base) removes a proton from the methyl group of acetyl-CoA to form its enol. His 274 stabilizes the acetyl-CoA enolate by forming a hydrogen bond with the enolate oxygen. The enolate then nucleophilically attacks oxaloacetate’s carbonyl carbon, and His 320 donates a proton to oxaloacetate’s carbonyl group in a concerted step, forming citryl-CoA (which remains bound to the enzyme). Finally, citryl-CoA is hydrolyzed to citrate and CoA. | ||