Nitric Oxide Synthase: Difference between revisions

Line 54: Line 54:
The H<sub>4</sub>B is bound by hydrogen-bonds to several of the molekules surrounding it, including the substrate L-Arg. The substrate is H-bonded to the 4-keto group of pterin, and to one of the heme propionate groups, that has two carboxylate oxygens in use for H-bonds. These oxygens are further H-bonded to the 4-keto group of pterin, through water, and directly to N(3) and NH<sub>2</sub> on C (2). The big picture of all the H-bonds can be seen on figure (???)-lav figur i chemdraw inspireret af figuren s. 943Raman)))
The H<sub>4</sub>B is bound by hydrogen-bonds to several of the molekules surrounding it, including the substrate L-Arg. The substrate is H-bonded to the 4-keto group of pterin, and to one of the heme propionate groups, that has two carboxylate oxygens in use for H-bonds. These oxygens are further H-bonded to the 4-keto group of pterin, through water, and directly to N(3) and NH<sub>2</sub> on C (2). The big picture of all the H-bonds can be seen on figure (???)-lav figur i chemdraw inspireret af figuren s. 943Raman)))


But H<sub>4</sub>B is not only a structurel cofactor, it also plays a very important role in NO synthesis, donating an electron to the heme.<ref>PMID: 12237227 </ref> H<sub>4</sub>B can deliver an electron to the heme much faster than the reductase domain can, therefor H<sub>4</sub>B is used by NOS in the Arg hydroxylation, activating O<sub>2</sub> by providing the second electron. So H<sub>4</sub>B is a kinetically prefered electron donor. (indsæt fig.3 i artiklen) As shown in the reaction (fig.3) the second electron, that H<sub>4</sub>B donates helps the Fe<sup>II</sup>O<sub>2</sub> intermadiate to be reduced in to oxidants that can react with Arg and N-hydroxy-L-arginine (NOHA) <ref>PMID: 12237227 </ref> If H<sub>4</sub>B was not present the Fe<sup>II</sup>O<sub>2</sub> intermediate would decay to superoxide and ferric enzyme, because the reductase domain is slower to deliver an electron, than the proces of decay is to happen. But H<sub>4</sub>B is faster than both of these processes. <ref>PMID: 12237227 </ref>
But H<sub>4</sub>B is not only a structurel cofactor, it also plays a very important role in NO synthesis, donating an electron to the heme.<ref>PMID: 12237227 </ref> H<sub>4</sub>B can deliver an electron to the heme much faster than the reductase domain can, therefor H<sub>4</sub>B is used by NOS in the Arg hydroxylation, activating O<sub>2</sub> by providing the second electron. So H<sub>4</sub>B is a kinetically prefered electron donor. [[image:mette.png|left|frame|model for NOS oxygen activation]](indsæt fig.3 i artiklen) As shown in the reaction (fig.3) the second electron, that H<sub>4</sub>B donates helps the Fe<sup>II</sup>O<sub>2</sub> intermadiate to be reduced in to oxidants that can react with Arg and N-hydroxy-L-arginine (NOHA) <ref>PMID: 12237227 </ref> If H<sub>4</sub>B was not present the Fe<sup>II</sup>O<sub>2</sub> intermediate would decay to superoxide and ferric enzyme, because the reductase domain is slower to deliver an electron, than the proces of decay is to happen. But H<sub>4</sub>B is faster than both of these processes. <ref>PMID: 12237227 </ref>


===Heme===
===Heme===

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Michael Skovbo Windahl, Sara Toftegaard Petersen, Mathilde Thomsen, Mette Trauelsen, Eran Hodis, Jaime Prilusky, Karl Oberholser, Alexander Berchansky, Michal Harel, Ann Taylor