1kwc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1kwc ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1kwc ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
BphC derived from Pseudomonas sp. strain KKS102 is an extradiol-cleaving catecholic dioxygenase. This enzyme contains a non-heme iron atom and plays an important role in degrading biphenyl/polychlorinated biphenyls (PCBs) in the microbe. To elucidate detailed structures of BphC reaction intermediates, crystal structures of the substrate-free form, the BphC-substrate complex, and the BphC-substrate-NO (nitric oxide) complex were determined. These crystal structures revealed (1) the binding site of the O(2) molecule in the coordination sphere and (2) conformational changes of His194 during the catalytic reaction. On the basis of these findings, we propose a catalytic mechanism for the extradiol-cleaving catecholic dioxygenase in which His194 seems to play three distinct roles. At the early stage of the catalytic reaction, His194 appears to act as a catalytic base, which likely deprotonates the hydroxyl group of the substrate. At the next stage, the protonated His194 seems to stabilize a negative charge on the O2 molecule located in the hydrophobic O2-binding cavity. Finally, protonated His194 seems to function as a proton donor, whose existence has been proposed.
Crystal structures of the reaction intermediate and its homologue of an extradiol-cleaving catecholic dioxygenase.,Sato N, Uragami Y, Nishizaki T, Takahashi Y, Sazaki G, Sugimoto K, Nonaka T, Masai E, Fukuda M, Senda T J Mol Biol. 2002 Aug 23;321(4):621-36. PMID:12206778<ref>PMID:12206778</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1kwc" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Dioxygenase 3D structures|Dioxygenase 3D structures]]
*[[Dioxygenase 3D structures|Dioxygenase 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Latest revision as of 21:13, 29 May 2024

The His145Ala mutant of 2,3-dihydroxybiphenyl dioxygenase in complex with 2,3-dihydroxybiphenylThe His145Ala mutant of 2,3-dihydroxybiphenyl dioxygenase in complex with 2,3-dihydroxybiphenyl

Structural highlights

1kwc is a 1 chain structure with sequence from Pseudomonas sp. KKS102. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BPHC_PSES1

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BphC derived from Pseudomonas sp. strain KKS102 is an extradiol-cleaving catecholic dioxygenase. This enzyme contains a non-heme iron atom and plays an important role in degrading biphenyl/polychlorinated biphenyls (PCBs) in the microbe. To elucidate detailed structures of BphC reaction intermediates, crystal structures of the substrate-free form, the BphC-substrate complex, and the BphC-substrate-NO (nitric oxide) complex were determined. These crystal structures revealed (1) the binding site of the O(2) molecule in the coordination sphere and (2) conformational changes of His194 during the catalytic reaction. On the basis of these findings, we propose a catalytic mechanism for the extradiol-cleaving catecholic dioxygenase in which His194 seems to play three distinct roles. At the early stage of the catalytic reaction, His194 appears to act as a catalytic base, which likely deprotonates the hydroxyl group of the substrate. At the next stage, the protonated His194 seems to stabilize a negative charge on the O2 molecule located in the hydrophobic O2-binding cavity. Finally, protonated His194 seems to function as a proton donor, whose existence has been proposed.

Crystal structures of the reaction intermediate and its homologue of an extradiol-cleaving catecholic dioxygenase.,Sato N, Uragami Y, Nishizaki T, Takahashi Y, Sazaki G, Sugimoto K, Nonaka T, Masai E, Fukuda M, Senda T J Mol Biol. 2002 Aug 23;321(4):621-36. PMID:12206778[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sato N, Uragami Y, Nishizaki T, Takahashi Y, Sazaki G, Sugimoto K, Nonaka T, Masai E, Fukuda M, Senda T. Crystal structures of the reaction intermediate and its homologue of an extradiol-cleaving catecholic dioxygenase. J Mol Biol. 2002 Aug 23;321(4):621-36. PMID:12206778

1kwc, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA