1j78: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/j7/1j78_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/j7/1j78_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1j78 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1j78 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The human serum vitamin D-binding protein (DBP) has many physiologically important functions, ranging from transporting vitamin D3 metabolites, binding and sequestering globular actin and binding fatty acids to functioning in the immune system. Here we report the 2.3 A crystal structure of DBP in complex with 25-hydroxyvitamin D3, a vitamin D3 metabolite, which reveals the vitamin D-binding site in the N-terminal part of domain I. To more explicitly explore this, we also studied the structure of DBP in complex with a vitamin D3 analog. Comparisons with the structure of human serum albumin, another family member, reveal a similar topology but also significant differences in overall, as well as local, folding. These observed structural differences explain the unique vitamin D3-binding property of DBP. | |||
A structural basis for the unique binding features of the human vitamin D-binding protein.,Verboven C, Rabijns A, De Maeyer M, Van Baelen H, Bouillon R, De Ranter C Nat Struct Biol. 2002 Feb;9(2):131-6. PMID:11799400<ref>PMID:11799400</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1j78" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |