1a62: Difference between revisions
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1a62 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1a62 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Transcription termination factor rho is an ATP-dependent hexameric helicase found in most eubacterial species. The Escherichia coli rho monomer consists of two domains, an RNA-binding domain (residues 1-130) and an ATPase domain (residues 131-419). The ATPase domain is homologous to the beta subunit of F1-ATPase. Here, we report that the crystal structure of the RNA-binding domain of rho (rho130) at 1.55 A confirms that rho130 contains the oligosaccharide/oligonucleotide-binding (OB) fold, a five stranded beta-barrel. The beta-barrel of rho130 is also surprisingly similar to the N-terminal beta-barrel of F1 ATPase, extending the applicability of F1 ATPase as a structural model for hexameric rho. | |||
Crystal structure of the RNA-binding domain from transcription termination factor rho.,Allison TJ, Wood TC, Briercheck DM, Rastinejad F, Richardson JP, Rule GS Nat Struct Biol. 1998 May;5(5):352-6. PMID:9586995<ref>PMID:9586995</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1a62" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Helicase 3D structures|Helicase 3D structures]] | *[[Helicase 3D structures|Helicase 3D structures]] | ||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 08:23, 5 June 2024
CRYSTAL STRUCTURE OF THE RNA-BINDING DOMAIN OF THE TRANSCRIPTIONAL TERMINATOR PROTEIN RHOCRYSTAL STRUCTURE OF THE RNA-BINDING DOMAIN OF THE TRANSCRIPTIONAL TERMINATOR PROTEIN RHO
Structural highlights
FunctionRHO_ECOLI Facilitates transcription termination by a mechanism that involves rho binding to the nascent RNA, activation of rho's RNA-dependent ATPase activity, and release of the mRNA from the DNA template. RNA-dependent NTPAse which utilizes all four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01884] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTranscription termination factor rho is an ATP-dependent hexameric helicase found in most eubacterial species. The Escherichia coli rho monomer consists of two domains, an RNA-binding domain (residues 1-130) and an ATPase domain (residues 131-419). The ATPase domain is homologous to the beta subunit of F1-ATPase. Here, we report that the crystal structure of the RNA-binding domain of rho (rho130) at 1.55 A confirms that rho130 contains the oligosaccharide/oligonucleotide-binding (OB) fold, a five stranded beta-barrel. The beta-barrel of rho130 is also surprisingly similar to the N-terminal beta-barrel of F1 ATPase, extending the applicability of F1 ATPase as a structural model for hexameric rho. Crystal structure of the RNA-binding domain from transcription termination factor rho.,Allison TJ, Wood TC, Briercheck DM, Rastinejad F, Richardson JP, Rule GS Nat Struct Biol. 1998 May;5(5):352-6. PMID:9586995[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|