2f61: Difference between revisions

No edit summary
No edit summary
 
Line 9: Line 9:
</table>
</table>
== Disease ==
== Disease ==
[https://www.uniprot.org/uniprot/GLCM_HUMAN GLCM_HUMAN] Defects in GBA are the cause of Gaucher disease (GD) [MIM:[https://omim.org/entry/230800 230800]; also known as glucocerebrosidase deficiency. GD is the most prevalent lysosomal storage disease, characterized by accumulation of glucosylceramide in the reticulo-endothelial system. Different clinical forms are recognized depending on the presence (neuronopathic forms) or absence of central nervous system involvement, severity and age of onset.<ref>PMID:8294033</ref> [:]<ref>PMID:19286695</ref> <ref>PMID:16293621</ref> <ref>PMID:1974409</ref> <ref>PMID:1972019</ref> <ref>PMID:8432537</ref> <ref>PMID:7916532</ref> <ref>PMID:8112750</ref> <ref>PMID:8076951</ref> <ref>PMID:8790604</ref> <ref>PMID:7627184</ref> <ref>PMID:7627192</ref> <ref>PMID:8937765</ref> <ref>PMID:8829654</ref> <ref>PMID:8829663</ref> <ref>PMID:8889591</ref> <ref>PMID:8780099</ref> <ref>PMID:9182788</ref> <ref>PMID:9217217</ref> <ref>PMID:9279145</ref> <ref>PMID:9153297</ref> <ref>PMID:9061570</ref> <ref>PMID:9554454</ref> <ref>PMID:9683600</ref> <ref>PMID:9637431</ref> <ref>PMID:9516376</ref> <ref>PMID:9851895</ref> <ref>PMID:9650766</ref> <ref>PMID:9554746</ref> <ref>PMID:10206680</ref> <ref>PMID:10340647</ref> <ref>PMID:10360404</ref> <ref>PMID:10744424</ref> <ref>PMID:10352942</ref> <ref>PMID:10447266</ref> <ref>PMID:10796875</ref> <ref>PMID:11992489</ref> <ref>PMID:11933202</ref> <ref>PMID:12204005</ref> <ref>PMID:12847165</ref> <ref>PMID:15292921</ref> <ref>PMID:15826241</ref> <ref>PMID:15605411</ref> <ref>PMID:16148263</ref> <ref>PMID:17620502</ref> <ref>PMID:18332251</ref> <ref>PMID:19846850</ref>  Defects in GBA are the cause of Gaucher disease type 1 (GD1) [MIM:[https://omim.org/entry/230800 230800]; also known as adult non-neuronopathic Gaucher disease. GD1 is characterized by hepatosplenomegaly with consequent anemia and thrombopenia, and bone involvement. The central nervous system is not involved.[:]<ref>PMID:19286695</ref> <ref>PMID:8889591</ref> <ref>PMID:10206680</ref> <ref>PMID:10340647</ref> <ref>PMID:12847165</ref> <ref>PMID:15605411</ref> <ref>PMID:16148263</ref> <ref>PMID:17620502</ref> <ref>PMID:18332251</ref> <ref>PMID:19846850</ref>  Defects in GBA are the cause of Gaucher disease type 2 (GD2) [MIM:[https://omim.org/entry/230900 230900]; also known as acute neuronopathic Gaucher disease. GD2 is the most severe form and is universally progressive and fatal. It manifests soon after birth, with death generally occurring before patients reach two years of age.<ref>PMID:19286695</ref> <ref>PMID:9637431</ref> <ref>PMID:9851895</ref> <ref>PMID:12847165</ref> <ref>PMID:16148263</ref> <ref>PMID:17620502</ref> <ref>PMID:18332251</ref> <ref>PMID:19846850</ref>  Defects in GBA are the cause of Gaucher disease type 3 (GD3) [MIM:[https://omim.org/entry/231000 231000]; also known as subacute neuronopathic Gaucher disease. GD3 has central nervous manifestations.<ref>PMID:19286695</ref> <ref>PMID:8780099</ref> <ref>PMID:12847165</ref> <ref>PMID:16148263</ref> <ref>PMID:17620502</ref> <ref>PMID:18332251</ref> <ref>PMID:19846850</ref>  Defects in GBA are the cause of Gaucher disease type 3C (GD3C) [MIM:[https://omim.org/entry/231005 231005]; also known as pseudo-Gaucher disease or Gaucher-like disease.<ref>PMID:19286695</ref> <ref>PMID:12847165</ref> <ref>PMID:16148263</ref> <ref>PMID:17620502</ref> <ref>PMID:18332251</ref> <ref>PMID:19846850</ref>  Defects in GBA are the cause of Gaucher disease perinatal lethal (GDPL) [MIM:[https://omim.org/entry/608013 608013]. It is a distinct form of Gaucher disease type 2, characterized by fetal onset. Hydrops fetalis, in utero fetal death and neonatal distress are prominent features. When hydrops is absent, neurologic involvement begins in the first week and leads to death within 3 months. Hepatosplenomegaly is a major sign, and is associated with ichthyosis, arthrogryposis, and facial dysmorphism.<ref>PMID:19286695</ref> <ref>PMID:12847165</ref> <ref>PMID:16148263</ref> <ref>PMID:17620502</ref> <ref>PMID:18332251</ref> <ref>PMID:19846850</ref>  Note=Perinatal lethal Gaucher disease is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders.<ref>PMID:19286695</ref> <ref>PMID:12847165</ref> <ref>PMID:16148263</ref> <ref>PMID:17620502</ref> <ref>PMID:18332251</ref> <ref>PMID:19846850</ref>  Defects in GBA contribute to susceptibility to Parkinson disease (PARK) [MIM:[https://omim.org/entry/168600 168600]. A complex neurodegenerative disorder characterized by bradykinesia, resting tremor, muscular rigidity and postural instability. Additional features are characteristic postural abnormalities, dysautonomia, dystonic cramps, and dementia. The pathology of Parkinson disease involves the loss of dopaminergic neurons in the substantia nigra and the presence of Lewy bodies (intraneuronal accumulations of aggregated proteins), in surviving neurons in various areas of the brain. The disease is progressive and usually manifests after the age of 50 years, although early-onset cases (before 50 years) are known. The majority of the cases are sporadic suggesting a multifactorial etiology based on environmental and genetic factors. However, some patients present with a positive family history for the disease. Familial forms of the disease usually begin at earlier ages and are associated with atypical clinical features.<ref>PMID:19286695</ref> <ref>PMID:12847165</ref> <ref>PMID:16148263</ref> <ref>PMID:17620502</ref> <ref>PMID:18332251</ref> <ref>PMID:19846850</ref>
[https://www.uniprot.org/uniprot/GBA1_HUMAN GBA1_HUMAN] Gaucher disease type 3;Gaucher disease-ophthalmoplegia-cardiovascular calcification syndrome;Gaucher disease type 1;Hereditary late-onset Parkinson disease;Gaucher disease type 2;Fetal Gaucher disease;NON RARE IN EUROPE: Dementia with Lewy body;NON RARE IN EUROPE: Parkinson disease. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. Perinatal lethal Gaucher disease is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders.<ref>PMID:10352942</ref>  Disease susceptibility may be associated with variants affecting the gene represented in this entry.
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/GLCM_HUMAN GLCM_HUMAN]  
[https://www.uniprot.org/uniprot/GBA1_HUMAN GBA1_HUMAN] Glucosylceramidase that catalyzes, within the lysosomal compartment, the hydrolysis of glucosylceramides/GlcCers (such as beta-D-glucosyl-(1<->1')-N-acylsphing-4-enine) into free ceramides (such as N-acylsphing-4-enine) and glucose (PubMed:15916907, PubMed:24211208, PubMed:32144204, PubMed:9201993). Plays a central role in the degradation of complex lipids and the turnover of cellular membranes (PubMed:27378698). Through the production of ceramides, participates in the PKC-activated salvage pathway of ceramide formation (PubMed:19279011). Catalyzes the glucosylation of cholesterol, through a transglucosylation reaction where glucose is transferred from GlcCer to cholesterol (PubMed:24211208, PubMed:26724485, PubMed:32144204). GlcCer containing mono-unsaturated fatty acids (such as beta-D-glucosyl-N-(9Z-octadecenoyl)-sphing-4-enine) are preferred as glucose donors for cholesterol glucosylation when compared with GlcCer containing same chain length of saturated fatty acids (such as beta-D-glucosyl-N-octadecanoyl-sphing-4-enine) (PubMed:24211208). Under specific conditions, may alternatively catalyze the reverse reaction, transferring glucose from cholesteryl 3-beta-D-glucoside to ceramide (Probable) (PubMed:26724485). Can also hydrolyze cholesteryl 3-beta-D-glucoside producing glucose and cholesterol (PubMed:24211208, PubMed:26724485). Catalyzes the hydrolysis of galactosylceramides/GalCers (such as beta-D-galactosyl-(1<->1')-N-acylsphing-4-enine), as well as the transfer of galactose between GalCers and cholesterol in vitro, but with lower activity than with GlcCers (PubMed:32144204). Contrary to GlcCer and GalCer, xylosylceramide/XylCer (such as beta-D-xyosyl-(1<->1')-N-acylsphing-4-enine) is not a good substrate for hydrolysis, however it is a good xylose donor for transxylosylation activity to form cholesteryl 3-beta-D-xyloside (PubMed:33361282).<ref>PMID:15916907</ref> <ref>PMID:19279011</ref> <ref>PMID:24211208</ref> <ref>PMID:26724485</ref> <ref>PMID:27378698</ref> <ref>PMID:32144204</ref> <ref>PMID:33361282</ref> <ref>PMID:9201993</ref> <ref>PMID:32144204</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 17: Line 17:
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f6/2f61_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f6/2f61_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA