8hil: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[8hil]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Brassica_oleracea Brassica oleracea]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8HIL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8HIL FirstGlance]. <br> | <table><tr><td colspan='2'>[[8hil]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Brassica_oleracea Brassica oleracea]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8HIL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8HIL FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.57Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8hil FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8hil OCA], [https://pdbe.org/8hil PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8hil RCSB], [https://www.ebi.ac.uk/pdbsum/8hil PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8hil ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8hil FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8hil OCA], [https://pdbe.org/8hil PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8hil RCSB], [https://www.ebi.ac.uk/pdbsum/8hil PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8hil ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 11: | Line 12: | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
In addition to the conserved RNA polymerases (Pols | In addition to the conserved RNA polymerases I to III (Pols I to III) in eukaryotes, two atypical polymerases, Pols IV and V, specifically produce noncoding RNA in the RNA-directed DNA methylation pathway in plants. Here, we report on the structures of cauliflower Pol V in the free and elongation conformations. A conserved tyrosine residue of NRPE2 stacks with a double-stranded DNA branch of the transcription bubble to potentially attenuate elongation by inducing transcription stalling. The nontemplate DNA strand is captured by NRPE2 to enhance backtracking, thereby increasing 3'-5' cleavage, which likely underpins Pol V's high fidelity. The structures also illuminate the mechanism of Pol V transcription stalling and enhanced backtracking, which may be important for Pol V's retention on chromatin to serve its function in tethering downstream factors for RNA-directed DNA methylation. | ||
Structure and mechanism of the plant RNA polymerase V.,Xie G, Du X, Hu H, Li S, Cao X, Jacobsen SE, Du J Science. 2023 Mar | Structure and mechanism of the plant RNA polymerase V.,Xie G, Du X, Hu H, Li S, Cao X, Jacobsen SE, Du J Science. 2023 Mar 24;379(6638):1209-1213. doi: 10.1126/science.adf8231. Epub 2023 , Mar 9. PMID:36893216<ref>PMID:36893216</ref> | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 8hil" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 8hil" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[RNA polymerase 3D structures|RNA polymerase 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> |
Latest revision as of 10:38, 3 July 2024
A cryo-EM structure of B. oleracea RNA polymerase V at 3.57 AngstromA cryo-EM structure of B. oleracea RNA polymerase V at 3.57 Angstrom
Structural highlights
FunctionPublication Abstract from PubMedIn addition to the conserved RNA polymerases I to III (Pols I to III) in eukaryotes, two atypical polymerases, Pols IV and V, specifically produce noncoding RNA in the RNA-directed DNA methylation pathway in plants. Here, we report on the structures of cauliflower Pol V in the free and elongation conformations. A conserved tyrosine residue of NRPE2 stacks with a double-stranded DNA branch of the transcription bubble to potentially attenuate elongation by inducing transcription stalling. The nontemplate DNA strand is captured by NRPE2 to enhance backtracking, thereby increasing 3'-5' cleavage, which likely underpins Pol V's high fidelity. The structures also illuminate the mechanism of Pol V transcription stalling and enhanced backtracking, which may be important for Pol V's retention on chromatin to serve its function in tethering downstream factors for RNA-directed DNA methylation. Structure and mechanism of the plant RNA polymerase V.,Xie G, Du X, Hu H, Li S, Cao X, Jacobsen SE, Du J Science. 2023 Mar 24;379(6638):1209-1213. doi: 10.1126/science.adf8231. Epub 2023 , Mar 9. PMID:36893216[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|