4tlm: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4tlm]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4TLM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4TLM FirstGlance]. <br> | <table><tr><td colspan='2'>[[4tlm]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4TLM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4TLM FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1AC:1-AMINOCYCLOPROPANECARBOXYLIC+ACID'>1AC</scene>, <scene name='pdbligand=JEG:TRANS-1-AMINOCYCLOBUTANE-1,3-DICARBOXYLIC+ACID'>JEG</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=QEM:4-[(1R,2S)-3-(4-BENZYLPIPERIDIN-1-YL)-1-HYDROXY-2-METHYLPROPYL]PHENOL'>QEM</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.77Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1AC:1-AMINOCYCLOPROPANECARBOXYLIC+ACID'>1AC</scene>, <scene name='pdbligand=JEG:TRANS-1-AMINOCYCLOBUTANE-1,3-DICARBOXYLIC+ACID'>JEG</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=QEM:4-[(1R,2S)-3-(4-BENZYLPIPERIDIN-1-YL)-1-HYDROXY-2-METHYLPROPYL]PHENOL'>QEM</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4tlm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4tlm OCA], [https://pdbe.org/4tlm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4tlm RCSB], [https://www.ebi.ac.uk/pdbsum/4tlm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4tlm ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4tlm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4tlm OCA], [https://pdbe.org/4tlm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4tlm RCSB], [https://www.ebi.ac.uk/pdbsum/4tlm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4tlm ProSAT]</span></td></tr> | ||
</table> | </table> |
Latest revision as of 03:46, 28 December 2023
Crystal structure of GluN1/GluN2B NMDA receptor, structure 2Crystal structure of GluN1/GluN2B NMDA receptor, structure 2
Structural highlights
FunctionNMDZ1_XENLA Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:16214956, PubMed:19524674, PubMed:21677647, PubMed:25008524, PubMed:26912815, PubMed:27135925, Ref.11, PubMed:28232581). Sensitivity to glutamate and channel kinetics depend on the subunit composition (Probable).[1] [2] [3] [4] [5] [6] [7] [PDB:5IOV] Publication Abstract from PubMedN-methyl-d-aspartate (NMDA) receptors are Hebbian-like coincidence detectors, requiring binding of glycine and glutamate in combination with the relief of voltage-dependent magnesium block to open an ion conductive pore across the membrane bilayer. Despite the importance of the NMDA receptor in the development and function of the brain, a molecular structure of an intact receptor has remained elusive. Here we present X-ray crystal structures of the Xenopus laevis GluN1-GluN2B NMDA receptor with the allosteric inhibitor, Ro25-6981, partial agonists and the ion channel blocker, MK-801. Receptor subunits are arranged in a 1-2-1-2 fashion, demonstrating extensive interactions between the amino-terminal and ligand-binding domains. The transmembrane domains harbour a closed-blocked ion channel, a pyramidal central vestibule lined by residues implicated in binding ion channel blockers and magnesium, and a approximately twofold symmetric arrangement of ion channel pore loops. These structures provide new insights into the architecture, allosteric coupling and ion channel function of NMDA receptors. NMDA receptor structures reveal subunit arrangement and pore architecture.,Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E Nature. 2014 Jul 10;511(7508):191-7. doi: 10.1038/nature13548. Epub 2014 Jun 22. PMID:25008524[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|