7fje: Difference between revisions

No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7fje]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7FJE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7FJE FirstGlance]. <br>
<table><tr><td colspan='2'>[[7fje]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7FJE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7FJE FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CLR:CHOLESTEROL'>CLR</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CLR:CHOLESTEROL'>CLR</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7fje FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7fje OCA], [https://pdbe.org/7fje PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7fje RCSB], [https://www.ebi.ac.uk/pdbsum/7fje PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7fje ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7fje FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7fje OCA], [https://pdbe.org/7fje PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7fje RCSB], [https://www.ebi.ac.uk/pdbsum/7fje PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7fje ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[https://www.uniprot.org/uniprot/CD3Z_HUMAN CD3Z_HUMAN]] Defects in CD247 are the cause of immunodeficiency due to defect in CD3-zeta (CD3ZID) [MIM:[https://omim.org/entry/610163 610163]]. An immunological deficiency characterized by T-cells impaired immune response to alloantigens, tetanus toxoid and mitogens.<ref>PMID:16672702</ref>  
[https://www.uniprot.org/uniprot/CD3Z_HUMAN CD3Z_HUMAN] Defects in CD247 are the cause of immunodeficiency due to defect in CD3-zeta (CD3ZID) [MIM:[https://omim.org/entry/610163 610163]. An immunological deficiency characterized by T-cells impaired immune response to alloantigens, tetanus toxoid and mitogens.<ref>PMID:16672702</ref>  
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/CD3Z_HUMAN CD3Z_HUMAN]] Probable role in assembly and expression of the TCR complex as well as signal transduction upon antigen triggering.
[https://www.uniprot.org/uniprot/CD3Z_HUMAN CD3Z_HUMAN] Probable role in assembly and expression of the TCR complex as well as signal transduction upon antigen triggering.
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Cholesterol molecules specifically bind to the resting alphabetaTCR to inhibit cytoplasmic CD3zeta ITAM phosphorylation through sequestering the TCR-CD3 complex in an inactive conformation. The mechanisms of cholesterol-mediated inhibition of TCR-CD3 and its activation remain unclear. Here, we present cryoelectron microscopy structures of cholesterol- and cholesterol sulfate (CS)-inhibited TCR-CD3 complexes and an auto-active TCR-CD3 variant. The structures reveal that cholesterol molecules act like a latch to lock CD3zeta into an inactive conformation in the membrane. Mutations impairing binding of cholesterol molecules to the tunnel result in the movement of the proximal C terminus of the CD3zeta transmembrane helix, thereby activating the TCR-CD3 complex in human cells. Together, our data reveal the structural basis of TCR inhibition by cholesterol, illustrate how the cholesterol-binding tunnel is allosterically coupled to TCR triggering, and lay a foundation for the development of immunotherapies through directly targeting the TCR-CD3 complex.
Cholesterol molecules specifically bind to the resting alphabetaTCR to inhibit cytoplasmic CD3zeta ITAM phosphorylation through sequestering the TCR-CD3 complex in an inactive conformation. The mechanisms of cholesterol-mediated inhibition of TCR-CD3 and its activation remain unclear. Here, we present cryoelectron microscopy structures of cholesterol- and cholesterol sulfate (CS)-inhibited TCR-CD3 complexes and an auto-active TCR-CD3 variant. The structures reveal that cholesterol molecules act like a latch to lock CD3zeta into an inactive conformation in the membrane. Mutations impairing binding of cholesterol molecules to the tunnel result in the movement of the proximal C terminus of the CD3zeta transmembrane helix, thereby activating the TCR-CD3 complex in human cells. Together, our data reveal the structural basis of TCR inhibition by cholesterol, illustrate how the cholesterol-binding tunnel is allosterically coupled to TCR triggering, and lay a foundation for the development of immunotherapies through directly targeting the TCR-CD3 complex.


Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility.,Chen Y, Zhu Y, Li X, Gao W, Zhen Z, Dong, Huang B, Ma Z, Zhang A, Song X, Ma Y, Guo C, Zhang F, Huang Z Mol Cell. 2022 Apr 7;82(7):1278-1287.e5. doi: 10.1016/j.molcel.2022.02.017. Epub , 2022 Mar 9. PMID:35271814<ref>PMID:35271814</ref>
Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility.,Chen Y, Zhu Y, Li X, Gao W, Zhen Z, Dong D, Huang B, Ma Z, Zhang A, Song X, Ma Y, Guo C, Zhang F, Huang Z Mol Cell. 2022 Apr 7;82(7):1278-1287.e5. doi: 10.1016/j.molcel.2022.02.017. Epub , 2022 Mar 9. PMID:35271814<ref>PMID:35271814</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 7fje" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 7fje" style="background-color:#fffaf0;"></div>
==See Also==
*[[CD3 3D structures|CD3 3D structures]]
*[[T-cell receptor 3D structures|T-cell receptor 3D structures]]
== References ==
== References ==
<references/>
<references/>

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA