4cda: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4cda]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Achromobacter_xylosoxidans Achromobacter xylosoxidans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4CDA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4CDA FirstGlance]. <br> | <table><tr><td colspan='2'>[[4cda]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Achromobacter_xylosoxidans Achromobacter xylosoxidans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4CDA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4CDA FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.3Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4cda FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4cda OCA], [https://pdbe.org/4cda PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4cda RCSB], [https://www.ebi.ac.uk/pdbsum/4cda PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4cda ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4cda FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4cda OCA], [https://pdbe.org/4cda PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4cda RCSB], [https://www.ebi.ac.uk/pdbsum/4cda PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4cda ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/CYCP_ALCXX CYCP_ALCXX] Cytochrome c' is the most widely occurring bacterial c-type cytochrome. Cytochromes c' are high-spin proteins and the heme has no sixth ligand. Their exact function is not known. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
It is crucial to assign the correct redox and ligand states to crystal structures of proteins with an active redox centre to gain valid functional information and prevent the misinterpretation of structures. Single-crystal spectroscopies, particularly when applied in situ at macromolecular crystallography beamlines, allow spectroscopic investigations of redox and ligand states and the identification of reaction intermediates in protein crystals during the collection of structural data. Single-crystal resonance Raman spectroscopy was carried out in combination with macromolecular crystallography on Swiss Light Source beamline X10SA using cytochrome c' from Alcaligenes xylosoxidans. This allowed the fingerprinting and validation of different redox and ligand states, identification of vibrational modes and identification of intermediates together with monitoring of radiation-induced changes. This combined approach provides a powerful tool to obtain complementary data and correctly assign the true oxidation and ligand state(s) in redox-protein crystals. | |||
Fingerprinting redox and ligand states in haemprotein crystal structures using resonance Raman spectroscopy.,Kekilli D, Dworkowski FS, Pompidor G, Fuchs MR, Andrew CR, Antonyuk S, Strange RW, Eady RR, Hasnain SS, Hough MA Acta Crystallogr D Biol Crystallogr. 2014 May;70(Pt 5):1289-96. doi:, 10.1107/S1399004714004039. Epub 2014 Apr 29. PMID:24816098<ref>PMID:24816098</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4cda" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Cytochrome C 3D structures|Cytochrome C 3D structures]] | *[[Cytochrome C 3D structures|Cytochrome C 3D structures]] | ||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Latest revision as of 15:08, 20 December 2023
Spectroscopically-validated structure of ferric cytochrome c prime from Alcaligenes xylosoxidansSpectroscopically-validated structure of ferric cytochrome c prime from Alcaligenes xylosoxidans
Structural highlights
FunctionCYCP_ALCXX Cytochrome c' is the most widely occurring bacterial c-type cytochrome. Cytochromes c' are high-spin proteins and the heme has no sixth ligand. Their exact function is not known. Publication Abstract from PubMedIt is crucial to assign the correct redox and ligand states to crystal structures of proteins with an active redox centre to gain valid functional information and prevent the misinterpretation of structures. Single-crystal spectroscopies, particularly when applied in situ at macromolecular crystallography beamlines, allow spectroscopic investigations of redox and ligand states and the identification of reaction intermediates in protein crystals during the collection of structural data. Single-crystal resonance Raman spectroscopy was carried out in combination with macromolecular crystallography on Swiss Light Source beamline X10SA using cytochrome c' from Alcaligenes xylosoxidans. This allowed the fingerprinting and validation of different redox and ligand states, identification of vibrational modes and identification of intermediates together with monitoring of radiation-induced changes. This combined approach provides a powerful tool to obtain complementary data and correctly assign the true oxidation and ligand state(s) in redox-protein crystals. Fingerprinting redox and ligand states in haemprotein crystal structures using resonance Raman spectroscopy.,Kekilli D, Dworkowski FS, Pompidor G, Fuchs MR, Andrew CR, Antonyuk S, Strange RW, Eady RR, Hasnain SS, Hough MA Acta Crystallogr D Biol Crystallogr. 2014 May;70(Pt 5):1289-96. doi:, 10.1107/S1399004714004039. Epub 2014 Apr 29. PMID:24816098[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|