7tnh: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of CSF1R kinase domain in complex with DP-6233== | ==Crystal structure of CSF1R kinase domain in complex with DP-6233== | ||
<StructureSection load='7tnh' size='340' side='right'caption='[[7tnh]]' scene=''> | <StructureSection load='7tnh' size='340' side='right'caption='[[7tnh]], [[Resolution|resolution]] 2.70Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7TNH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7TNH FirstGlance]. <br> | <table><tr><td colspan='2'>[[7tnh]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7TNH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7TNH FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7tnh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7tnh OCA], [https://pdbe.org/7tnh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7tnh RCSB], [https://www.ebi.ac.uk/pdbsum/7tnh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7tnh ProSAT]</span></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=I9W:2,2-dimethyl-N-[(6-methyl-5-{[2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-yl]oxy}pyridin-2-yl)carbamoyl]propanamide'>I9W</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7tnh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7tnh OCA], [https://pdbe.org/7tnh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7tnh RCSB], [https://www.ebi.ac.uk/pdbsum/7tnh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7tnh ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Disease == | |||
[[https://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN]] Note=Aberrant expression of CSF1 or CSF1R can promote cancer cell proliferation, invasion and formation of metastases. Overexpression of CSF1 or CSF1R is observed in a significant percentage of breast, ovarian, prostate, and endometrial cancers.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> Note=Aberrant expression of CSF1 or CSF1R may play a role in inflammatory diseases, such as rheumatoid arthritis, glomerulonephritis, atherosclerosis, and allograft rejection.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> Defects in CSF1R are the cause of leukoencephalopathy, diffuse hereditary, with spheroids (HDLS) [MIM:[https://omim.org/entry/221820 221820]]. An autosomal dominant adult-onset rapidly progressive neurodegenerative disorder characterized by variable behavioral, cognitive, and motor changes. Patients often die of dementia within 6 years of onset. Brain imaging shows patchy abnormalities in the cerebral white matter, predominantly affecting the frontal and parietal lobes.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> <ref>PMID:22197934</ref> | |||
== Function == | |||
[[https://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN]] Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor.<ref>PMID:7683918</ref> <ref>PMID:12882960</ref> <ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:16170366</ref> <ref>PMID:18467591</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:20489731</ref> <ref>PMID:20829061</ref> <ref>PMID:20504948</ref> <ref>PMID:16337366</ref> <ref>PMID:19193011</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Based on the structure of an early lead identified in Deciphera's proprietary compound collection of switch control kinase inhibitors and using a combination of medicinal chemistry guided structure activity relationships and structure-based drug design, a novel series of potent acyl urea-based CSF1R inhibitors was identified displaying high selectivity for CSF1R versus the other members of the Type III receptor tyrosine kinase (RTK) family members (KIT, PDGFR-alpha, PDGFR-beta, and FLT3), VEGFR2 and MET. Based on in vitro biology, in vitro ADME and in vivo PK/PD studies, compound 10 was selected as an advanced lead for Deciphera's CSF1R research program. | |||
Discovery of acyl ureas as highly selective small molecule CSF1R kinase inhibitors.,Caldwell TM, Kaufman MD, Wise SC, Mi Ahn Y, Hood MM, Lu WP, Patt WC, Samarakoon T, Vogeti L, Vogeti S, Yates KM, Bulfer SL, Le Bourdonnec B, Smith BD, Flynn DL Bioorg Med Chem Lett. 2022 Aug 9;74:128929. doi: 10.1016/j.bmcl.2022.128929. PMID:35961461<ref>PMID:35961461</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7tnh" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Arakaki | [[Category: Receptor protein-tyrosine kinase]] | ||
[[Category: Chun L]] | [[Category: Arakaki, T L]] | ||
[[Category: Edwards | [[Category: Chun, L]] | ||
[[Category: Flynn | [[Category: Edwards, T E]] | ||
[[Category: Flynn, D L]] | |||
[[Category: Cancer]] | |||
[[Category: Human csr1r kinase]] | |||
[[Category: Transferase]] |
Revision as of 09:44, 31 August 2022
Crystal structure of CSF1R kinase domain in complex with DP-6233Crystal structure of CSF1R kinase domain in complex with DP-6233
Structural highlights
Disease[CSF1R_HUMAN] Note=Aberrant expression of CSF1 or CSF1R can promote cancer cell proliferation, invasion and formation of metastases. Overexpression of CSF1 or CSF1R is observed in a significant percentage of breast, ovarian, prostate, and endometrial cancers.[1] [2] [3] [4] [5] [6] Note=Aberrant expression of CSF1 or CSF1R may play a role in inflammatory diseases, such as rheumatoid arthritis, glomerulonephritis, atherosclerosis, and allograft rejection.[7] [8] [9] [10] [11] [12] Defects in CSF1R are the cause of leukoencephalopathy, diffuse hereditary, with spheroids (HDLS) [MIM:221820]. An autosomal dominant adult-onset rapidly progressive neurodegenerative disorder characterized by variable behavioral, cognitive, and motor changes. Patients often die of dementia within 6 years of onset. Brain imaging shows patchy abnormalities in the cerebral white matter, predominantly affecting the frontal and parietal lobes.[13] [14] [15] [16] [17] [18] [19] Function[CSF1R_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor.[20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] Publication Abstract from PubMedBased on the structure of an early lead identified in Deciphera's proprietary compound collection of switch control kinase inhibitors and using a combination of medicinal chemistry guided structure activity relationships and structure-based drug design, a novel series of potent acyl urea-based CSF1R inhibitors was identified displaying high selectivity for CSF1R versus the other members of the Type III receptor tyrosine kinase (RTK) family members (KIT, PDGFR-alpha, PDGFR-beta, and FLT3), VEGFR2 and MET. Based on in vitro biology, in vitro ADME and in vivo PK/PD studies, compound 10 was selected as an advanced lead for Deciphera's CSF1R research program. Discovery of acyl ureas as highly selective small molecule CSF1R kinase inhibitors.,Caldwell TM, Kaufman MD, Wise SC, Mi Ahn Y, Hood MM, Lu WP, Patt WC, Samarakoon T, Vogeti L, Vogeti S, Yates KM, Bulfer SL, Le Bourdonnec B, Smith BD, Flynn DL Bioorg Med Chem Lett. 2022 Aug 9;74:128929. doi: 10.1016/j.bmcl.2022.128929. PMID:35961461[34] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|