8ad1: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Unreleased structure'''


The entry 8ad1 is ON HOLD  until Paper Publication
==RNA polymerase at U-rich pause bound to RNA putL triple mutant - pause prone, closed clamp state==
<StructureSection load='8ad1' size='340' side='right'caption='[[8ad1]], [[Resolution|resolution]] 4.10&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[8ad1]] is a 9 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8AD1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8AD1 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IGU:2-DEOXYISOGUANINE-5-MONOPHOSPHATE'>IGU</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8ad1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8ad1 OCA], [https://pdbe.org/8ad1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8ad1 RCSB], [https://www.ebi.ac.uk/pdbsum/8ad1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8ad1 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RPOZ_ECOLI RPOZ_ECOLI] Promotes RNA polymerase assembly. Latches the N- and C-terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.[HAMAP-Rule:MF_00366]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
RNA can regulate its own synthesis without auxiliary proteins. For example, U-rich RNA sequences signal RNA polymerase (RNAP) to pause transcription and are required for transcript release at intrinsic terminators in all kingdoms of life. In contrast, the regulatory RNA putL suppresses pausing and termination in cis. However, how nascent RNA modulates its own synthesis remains largely unknown. We present cryo-EM reconstructions of RNAP captured during transcription of putL variants or an unrelated sequence at a U-rich pause site. Our results suggest how putL suppresses pausing and promotes its synthesis. We demonstrate that transcribing a U-rich sequence, a ubiquitous trigger of intrinsic termination, promotes widening of the RNAP nucleic-acid-binding channel. Widening destabilizes RNAP interactions with DNA and RNA to facilitate transcript dissociation reminiscent of intrinsic transcription termination. Surprisingly, RNAP remains bound to DNA after transcript release. Our results provide the structural framework to understand RNA-mediated intrinsic transcription termination.


Authors: Dey, S., Weixlbaumer, A.
Structural insights into RNA-mediated transcription regulation in bacteria.,Dey S, Batisse C, Shukla J, Webster MW, Takacs M, Saint-Andre C, Weixlbaumer A Mol Cell. 2022 Oct 7. pii: S1097-2765(22)00909-1. doi:, 10.1016/j.molcel.2022.09.020. PMID:36220101<ref>PMID:36220101</ref>


Description: RNA polymerase at U-rich pause bound to RNA putL triple mutant -pause prone, closed clamp state
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
[[Category: Dey, S]]
<div class="pdbe-citations 8ad1" style="background-color:#fffaf0;"></div>
[[Category: Weixlbaumer, A]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Escherichia coli K-12]]
[[Category: Large Structures]]
[[Category: Dey S]]
[[Category: Weixlbaumer A]]

Revision as of 22:26, 19 October 2022

RNA polymerase at U-rich pause bound to RNA putL triple mutant - pause prone, closed clamp stateRNA polymerase at U-rich pause bound to RNA putL triple mutant - pause prone, closed clamp state

Structural highlights

8ad1 is a 9 chain structure with sequence from Escherichia coli K-12. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RPOZ_ECOLI Promotes RNA polymerase assembly. Latches the N- and C-terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.[HAMAP-Rule:MF_00366]

Publication Abstract from PubMed

RNA can regulate its own synthesis without auxiliary proteins. For example, U-rich RNA sequences signal RNA polymerase (RNAP) to pause transcription and are required for transcript release at intrinsic terminators in all kingdoms of life. In contrast, the regulatory RNA putL suppresses pausing and termination in cis. However, how nascent RNA modulates its own synthesis remains largely unknown. We present cryo-EM reconstructions of RNAP captured during transcription of putL variants or an unrelated sequence at a U-rich pause site. Our results suggest how putL suppresses pausing and promotes its synthesis. We demonstrate that transcribing a U-rich sequence, a ubiquitous trigger of intrinsic termination, promotes widening of the RNAP nucleic-acid-binding channel. Widening destabilizes RNAP interactions with DNA and RNA to facilitate transcript dissociation reminiscent of intrinsic transcription termination. Surprisingly, RNAP remains bound to DNA after transcript release. Our results provide the structural framework to understand RNA-mediated intrinsic transcription termination.

Structural insights into RNA-mediated transcription regulation in bacteria.,Dey S, Batisse C, Shukla J, Webster MW, Takacs M, Saint-Andre C, Weixlbaumer A Mol Cell. 2022 Oct 7. pii: S1097-2765(22)00909-1. doi:, 10.1016/j.molcel.2022.09.020. PMID:36220101[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Dey S, Batisse C, Shukla J, Webster MW, Takacs M, Saint-Andre C, Weixlbaumer A. Structural insights into RNA-mediated transcription regulation in bacteria. Mol Cell. 2022 Oct 7. pii: S1097-2765(22)00909-1. doi:, 10.1016/j.molcel.2022.09.020. PMID:36220101 doi:http://dx.doi.org/10.1016/j.molcel.2022.09.020

8ad1, resolution 4.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA