3sv5: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='3sv5' size='340' side='right'caption='[[3sv5]], [[Resolution|resolution]] 1.53&Aring;' scene=''>
<StructureSection load='3sv5' size='340' side='right'caption='[[3sv5]], [[Resolution|resolution]] 1.53&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3sv5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SV5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3SV5 FirstGlance]. <br>
<table><tr><td colspan='2'>[[3sv5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SV5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3SV5 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.53&#8491;</td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CR2:{(4Z)-2-(AMINOMETHYL)-4-[(4-HYDROXYPHENYL)METHYLIDENE]-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CR2</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CR2:{(4Z)-2-(AMINOMETHYL)-4-[(4-HYDROXYPHENYL)METHYLIDENE]-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CR2</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3sry|3sry]], [[3ss0|3ss0]], [[3ssh|3ssh]], [[3ssk|3ssk]], [[3ssl|3ssl]], [[3ssp|3ssp]], [[3sst|3sst]], [[3ssv|3ssv]], [[3ssy|3ssy]], [[3sve|3sve]], [[3st0|3st0]], [[3svb|3svb]], [[3svc|3svc]], [[3svd|3svd]]</div></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 AEQVI])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3sv5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3sv5 OCA], [https://pdbe.org/3sv5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3sv5 RCSB], [https://www.ebi.ac.uk/pdbsum/3sv5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3sv5 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3sv5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3sv5 OCA], [https://pdbe.org/3sv5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3sv5 RCSB], [https://www.ebi.ac.uk/pdbsum/3sv5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3sv5 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.  
[https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 28: Line 26:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Aeqvi]]
[[Category: Aequorea victoria]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Beese, L S]]
[[Category: Beese LS]]
[[Category: Grimley, J S]]
[[Category: Grimley JS]]
[[Category: Hellinga, H W]]
[[Category: Hellinga HW]]
[[Category: Wang, W]]
[[Category: Wang W]]
[[Category: Beta barrel]]
[[Category: Halide binding protein]]
[[Category: Imaging reagent]]
[[Category: Luminescent protein]]
[[Category: Yellow fluorescent protein]]

Latest revision as of 12:05, 15 November 2023

Engineered medium-affinity halide-binding protein derived from YFP: iodide complexEngineered medium-affinity halide-binding protein derived from YFP: iodide complex

Structural highlights

3sv5 is a 1 chain structure with sequence from Aequorea victoria. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.53Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.

Publication Abstract from PubMed

We describe an engineered fluorescent optogenetic sensor, SuperClomeleon, that robustly detects inhibitory synaptic activity in single, cultured mouse neurons by reporting intracellular chloride changes produced by exogenous GABA or inhibitory synaptic activity. Using a cell-free protein engineering automation methodology that bypasses gene cloning, we iteratively constructed, produced, and assayed hundreds of mutations in binding-site residues to identify improvements in Clomeleon, a first-generation, suboptimal sensor. Structural analysis revealed that these improvements involve halide contacts and distant side chain rearrangements. The development of optogenetic sensors that respond to neural activity enables cellular tracking of neural activity using optical, rather than electrophysiological, signals. Construction of such sensors using in vitro protein engineering establishes a powerful approach for developing new probes for brain imaging.

Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation.,Grimley JS, Li L, Wang W, Wen L, Beese LS, Hellinga HW, Augustine GJ J Neurosci. 2013 Oct 9;33(41):16297-309. doi: 10.1523/JNEUROSCI.4616-11.2013. PMID:24107961[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Grimley JS, Li L, Wang W, Wen L, Beese LS, Hellinga HW, Augustine GJ. Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation. J Neurosci. 2013 Oct 9;33(41):16297-309. doi: 10.1523/JNEUROSCI.4616-11.2013. PMID:24107961 doi:http://dx.doi.org/10.1523/JNEUROSCI.4616-11.2013

3sv5, resolution 1.53Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA